第1页(共37页)2017年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)﹣6的倒数是()A.﹣B.C.﹣6D.62.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣83.(3分)下列运算正确的是()A.2x2﹣x2=1B.x6÷x3=x2C.4x•x4=4x5D.(3xy2)2=6x2y44.(3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为()A.﹣1=B.﹣1=C.+1=D.+1=5.(3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A.B.C.D.6.(3分)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()第2页(共37页)A.46°B.47°C.48°D.49°7.(3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12B.13C.14D.158.(3分)如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为()A.B.(2﹣)πC.πD.π9.(3分)如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.B.C.D.10.(3分)如图,在四边形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD﹣DC﹣CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s关于t的函数图象是()第3页(共37页)A.B.C.D.11.(3分)对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.B.1C.D.12.(3分)如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣;③(S四边形CDEF)2=9+2;④DF2﹣DG2=7﹣2.其中结论正确的个数是()A.1B.2C.3D.4二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(﹣)﹣3﹣2cos45°+(3.14﹣π)0+=.14.(4分)圆锥的底面周长为,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为.15.(4分)直线y=kx+b与双曲线y=﹣交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE=.16.(4分)二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:第4页(共37页)①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有(请将结论正确的序号全部填上)17.(4分)如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)先化简,再求值:(a+)÷(a+),其中a=﹣3.19.(8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比(%)袋鼠跳4515夹球跑30c跳大绳7525绑腿跑b20拔河赛9030根据图表中提供的信息,解答下列问题:(1)a=,b=,c=.(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;第5页(共37页)(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.20.(9分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)21.(9分)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.第6页(共37页)22.(10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)该网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?23.(10分)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=,tan∠BAD=,求⊙O的半径.24.(12分)抛物线y=ax2+bx+c过A(2,3),B(4,3),C(6,﹣5)三点.第7页(共37页)(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足=,求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.第8页(共37页)2017年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)﹣6的倒数是()A.﹣B.C.﹣6D.6【分析】乘积是1的两数互为倒数.【解答】解:﹣6的倒数是﹣.故选:A【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A.7.8×10﹣7B.7.8×10﹣8C.0.78×10﹣7D.78×10﹣8【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故选A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列运算正确的是()A.2x2﹣x2=1B.x6÷x3=x2C.4x•x4=4x5D.(3xy2)2=6x2y4【分析】各项计算得到结果,即可作出判断.第9页(共37页)【解答】解:A、原式=x2,不符合题意;B、原式=x3,不符合题意;C、原式=4x5,符合题意;D、原式=9x2y4,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为()A.﹣1=B.﹣1=C.+1=D.+1=【分析】根据电动车每小时比自行车多行驶了25千米,可用x表示出电动车的速度,再由自行车行驶30千米比电动车行驶40千米多用了1小时,可列出方程.【解答】解:设自行车的平均速度为x千米/小时,则电动车的平均速度为(x+25)千米/小时,由自行车行驶30千米比电动车行驶40千米多用了1小时,可列方程﹣1=,故选B.【点评】本题主要考查列方程解应用题,确定出题目中的等量关系是解题的关键.5.(3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A.B.C.D.第10页(共37页)【分析】根据左视图的定义,画出左视图即可判断.【解答】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选C.【点评】本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.6.(3分)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A.46°B.47°C.48°D.49°【分析】根据等边对等角可得∠B=∠BCO,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AOD=∠B+∠BCO,根据切线的性质可得∠OAD=90°,然后根据直角三角形两锐角互余求解即可.【解答】解:∵OB=OC,∴∠B=∠BCO=21°,∴∠AOD=∠B+∠BCO=21°+21°=42°,∵AB是⊙O的直径,直线DA与⊙O相切与点A,∴∠OAD=90°,∴∠ADC=90°﹣∠AOD=90°﹣42°=48°.故选C.【点评】本题考查了切线的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.7.(3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12B.13C.14D.15【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,第11页(共37页)则内角和是900度,n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数,进而求出对角线的条数.【解答】解:根据题意,得(n﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为=14,故选C.【点评】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.8.