2016年山东省莱芜市中考数学试卷(试题+答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共31页)2016年山东省莱芜市中考数学试卷一、选择题1.4的算术平方根为()A.﹣2B.2C.±2D.2.下列运算正确的是()A.a7÷a4=a3B.5a2﹣3a=2aC.3a4•a2=3a8D.(a3b2)2=a5b43.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0B.小于0C.等于0D.不确定4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是()A.B.C.D.5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是()A.76°B.81°C.92°D.104°6.将函数y=﹣2x的图象向下平移3个单位,所得图象对应的函数关系式为()A.y=﹣2(x+3)B.y=﹣2(x﹣3)C.y=﹣2x+3D.y=﹣2x﹣37.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x圈,则列方程为()A.=B.=C.=D.=8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是()A.2B.4C.2D.29.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形C.正四边形D.正三角形第2页(共31页)10.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有()A.3条B.5条C.7条D.8条11.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.12.已知四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF,DF,DF交AB于点G,下列结论:(1)BF⊥DF;(2)S△BDG=S△ADF;(3)EF2=FG•FD;(4)=其中正确的个数是()A.1B.2C.3D.4二、填空题(本题共5小题,每小题4分,共20分)13.0+﹣()﹣1﹣|tan45°﹣3|=.14.若一次函数y=x+3与y=﹣2x的图象交于点A,则A关于y轴的对称点A′的坐标为.第3页(共31页)15.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为.16.如图,将Rt△ABC沿斜边AC所在直线翻折后点B落到点D,过点D作DE⊥AB,垂足为E,如果AE=3EB,EB=7,那么BC=.17.在Rt△ABC中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为.三、解答题(本大题共7小题,共64分)18.先化简,再求值:(a﹣)÷,其中a满足a2+3a﹣1=0.19.企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为人,请补全条形统计图;(2)统计的捐款金额的中位数是元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?第4页(共31页)20.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH.(1)求证:GH=GF;(2)试说明∠FGH与∠BAC互补.第5页(共31页)22.为迎接“国家卫生城市”复检,某市环卫局准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元;购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)每个A型垃圾箱和B型垃圾箱各多少元?(2)现需要购买A,B两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责A型垃圾箱的安装,每天可以安装15个,乙负责B型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买A型垃圾箱不少于150个时,该型号的产品可以打九折;若购买B型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买A型和B型垃圾箱各多少个?最低费用是多少元?23.已知AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.(1)如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,若tan∠C=,求tan∠ABH的值.24.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),C(﹣2,﹣3),直线BC与y轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.第6页(共31页)第7页(共31页)2016年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题1.4的算术平方根为()A.﹣2B.2C.±2D.【考点】算术平方根.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2,故选:B.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.下列运算正确的是()A.a7÷a4=a3B.5a2﹣3a=2aC.3a4•a2=3a8D.(a3b2)2=a5b4【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】分别利用单项式乘以单项式以及单项式除以单项式、积的乘方运算法则分别化简得出答案.【解答】解:A、a7÷a4=a3,正确;B、5a2﹣3a,无法计算,故此选项错误;C、3a4•a2=3a6,故此选项错误;D、(a3b2)2=a6b4,故此选项错误;故选:A.【点评】此题主要考查了幂的运算性质以及整式的加减运算,正确掌握相关性质是解题关键.3.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0B.小于0C.等于0D.不确定【考点】数轴.第8页(共31页)【分析】由a+c=0可知a与c互为相反数,所以原点是AC的中点,利用b、d与原点的距离可知b+d与0的大小关系.【解答】解:∵a+c=0,∴a,c互为相反数,∴原点O是AC的中点,∴由图可知:点D到原点的距离大于点B到原点的距离,且点D、B分布在原点的两侧,故b+d<0,故选(B).【点评】本题考查数轴、相反数、有理数加法法则,属于中等题型.4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是()A.B.C.D.【考点】概率公式.【分析】根据题意,分析可得掷一枚骰子,共6种情况,其中是3的倍数的有3、6,2种情况,由概率公式可得答案.【解答】解:根据题意,掷一枚骰子,共6种情况,其中是3的倍数的有3、6,2种情况,故其概率为;故选C.【点评】本题考查概率的求法,其计算方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是()A.76°B.81°C.92°D.104°【考点】三角形内角和定理.第9页(共31页)【专题】计算题;三角形.【分析】由题意利用三角形内角和定理求出∠ABC度数,再由BD为角平分线求出∠ABD度数,根据外角性质求出所求角度数即可.【解答】解:∵△ABC中,∠A=46°,∠C=74°,∴∠ABC=60°,∵BD为∠ABC平分线,∴∠ABD=∠CBD=30°,∵∠BDC为△ABD外角,∴∠BDC=∠A+∠ABD=76°,故选A【点评】此题考查了三角形内角和定理,以及外角性质,熟练掌握内角和定理是解本题的关键.6.将函数y=﹣2x的图象向下平移3个单位,所得图象对应的函数关系式为()A.y=﹣2(x+3)B.y=﹣2(x﹣3)C.y=﹣2x+3D.y=﹣2x﹣3【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则进行解答即可.【解答】解:把函数y=﹣2x的图象向下平移3个单位后,所得图象的函数关系式为y=﹣2x﹣3.故选D.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移时“上加下减,左加右减”的法则是解答此题的关键.7.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x圈,则列方程为()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据“甲转动270圈和乙转了330圈所用的时间相等”列出方程即可;【解答】解:设甲每分钟转x圈,则乙每分钟转动(200﹣x)圈,第10页(共31页)根据题意得:=,故选D.【点评】本题考查了分式方程的知识,解题的关键是能够从实际问题中找到等量关系,难度不大.8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是()A.2B.4C.2D.2【考点】圆锥的计算.【分析】根据题意可以求得围成圆锥底面圆的周长和半径,从而可以解答本题.【解答】解:由题意可得,围成的圆锥底面圆的周长为:=4π,设围成的圆锥底面圆的半径为r,则2πr=4π,解得,r=2,∴则圆锥的高是:,故选B.【点评】本题考查圆锥的计算,解题的关键是明确扇形弧长公式,圆锥的底面圆的周长等于侧面扇形的弧长.9.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形C.正四边形D.正三角形【考点】正多边形和圆.【分析】设AB是正多边形的一边,OC⊥AB,在直角△AOC中,利用三角函数求得∠AOC的度数,从而求得中心角的度数,然后利用360度除以中心角的度数,即可求得边数.【解答】解:正多边形的内切圆与外接圆的周长之比为:2,则半径之比为:2,设AB是正多边形的一边,OC⊥AB,则OC=,OA=OB=2,在直角△AOC中,cos∠AOC==,∴∠AOC=30°,∴∠AOC=60°,第11页(共31页)则正多边形边数是:=6.故选:B.【点评】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.10.已知△A

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功