时间序列midterm-solutions

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

SOLUTIONSIE409:TimeSeriesAnalysisFall2011MidtermExamOctober21,2011(1)(10points)Considerthelinear lterde nedbythecoecients(a2;a1;a0;a1;a2;a3)=120(2;5;20;10;10;3):Whatisthehighestdegreepolynomialthatthis lterwillpasswithoutdistortion?Answer:Alinear lterfajgpassesarbitrarypolynomialsofdegreekwithoutdistortionifandonlyifXjaj=1andXjjraj=0forr=1;:::;k:Forthegivenlinear lter,we nda2+a1+a0+a1+a2+a3=220520+2020+10201020+320=1;2a2a1+0a0+a1+2a2+3a3=420+520020+10202020+920=0;4a2+a1+0a0+a1+4a2+9a3=820520+020+10204020+2720=0;8a2a1+0a0+a1+8a2+27a3=1620+520020+10208020+8120=0;16a2+a1+0a0+a1+16a2+81a3=3220520+020+102016020+24320=6;Thus,this lterpassesuptodegree3polynomialswithoutdistortion.(2)(10points)Supposeyouaregivenatimeserieswithdatafx1;:::;xk1;xk;xk+1;xk+2;:::;xng:Atwo-sidedmovingaveragewithparameterq=2yieldsthesmootheddatafr1;:::;rk1;rk;rk+1;rk+2;:::;rng:Nowsupposeithasbeendeterminedthattheoriginaldatawasallcorrectexcepttherewereerrorswiththekthand(k+1)thdatapoints.Inparticular,therealdatashouldactuallybefx1;:::;xk1;xk+1;xk+11;xk+2;:::;xng:1Atwo-sidedmovingaveragewithparameterq=2wouldthenyieldthesmootheddatafs1;:::;sk1;sk;sk+1;sk+2;:::;sng:Whatisthee ectonthesmootheddatawiththischangeinthedata?Thatis,whichvalues(ifany)aredi erentinthesequencesfrtgandfstgandbyhowmuchdotheydi er?(Note:Youmayassumethatkismuchbiggerthan1andmuchsmallerthann.)Answer:Smoothingtheoriginaltimeseriesyieldsrk2=15(xk4+xk3+xk2+xk1+xk)rk1=15(xk3+xk2+xk1+xk+xk+1)rk=15(xk2+xk1+xk+xk+1+xk+2)rk+1=15(xk1+xk+xk+1+xk+2+xk+3)rk+2=15(xk+xk+1+xk+2+xk+3+xk+4)rk+3=15(xk+1+xk+2+xk+3+xk+4+xk+5)However,smoothingthecorrectedtimeseriesyieldssk2=15(xk4+xk3+xk2+xk1+xk+1)sk1=15(xk3+xk2+xk1+xk+xk+1)sk=15(xk2+xk1+xk+xk+1+xk+2)sk+1=15(xk1+xk+xk+1+xk+2+xk+3)sk+2=15(xk+xk+1+xk+2+xk+3+xk+4)sk+3=15(xk+1+xk+2+xk+3+xk+4+xk+51)Thus,rt=stforallt2f1;:::;ngnfk2;k+3gandsk2=rk2+15sk+3=rk+315:(3)(10points)LetfYtgbeastationaryprocesswithmeanzero,letmt=a+btbealineartrendcomponentwithconstantsaandb,andletstbeaseasonalcomponentwithperiod6.(a)IfXt=a+bt+st+Yt,showthatrr6Xt=(1L)(1L6)XtisstationaryandexpressitsautocovariancefunctionintermsofthatoffYtg.(b)IfXt=(a+bt)st+Yt,showthatr26Xt=(1L6)2XtisstationaryandexpressitsautocovariancefunctionintermsofthatoffYtg.Answer:Thedi erencedprocessinpart(a)satis esWt=(1L)(1L6)Xt=XtXt1Xt6+Xt7=(a+bt+st+Yt)(a+b(t1)+st1+Yt1)(a+b(t6)+st6+Yt6)+(a+b(t7)+st7+Yt7)=YtYt1Yt6+Yt7:2TheprocessfWtgisstationarysinceitsmeanfunctionist=E(Wt)=E(YtYt1Yt6+Yt7)=0anditsautocovariancefunction,intermsoftheautocovariancefunctionYhoffYtg,ist;t+h=E(WtWt+h)=E(YtYt1Yt6+Yt7)(Yt+hYt+h1Yt+h6+Yt+h7)=4Yh2Yh12Yh+1+Yh5+Yh+52Yh62Yh+6+Yh7+Yh+7:whicharebothindependentoft.Similarly,thedi erencedprocessinpart(b)satis esWt=(1L6)2Xt=Xt2Xt6+Xt12=((a+bt)st+Yt)2((a+b(t6))st6+Yt6)+((a+b(t12))st12+Yt12)=Yt2Yt6+Yt12:TheprocessfWtgisstationarysinceitsmeanfunctionist=E(Wt)=E(Yt2Yt6+Yt12)=0anditsautocovariancefunction,intermsoftheautocovariancefunctionYhoffYtg,ist;t+h=E(WtWt+h)=E(Yt2Yt6+Yt12)(Yt+h2Yt+h6+Yt+h12)=6Yh4Yh64Yh+6+Yh12+Yh+12:whicharebothindependentoft.(4)(15points)Datawasgeneratedtosimulateeachofthetimeseries(a)through(e)belowandthesampleACFandPACFwerecomputedandareshowninplots(i)through(v).MatcheachtimeserieswiththeplotsofitssampleACFandPACF.AssumethatfZtgWN(0;2).ExplainindetailhowyouhavematchedeachtimeserieswiththeplotsofitssampleACFandPACF.(Note:Itisessentialthatyouexplainyouranswerhere.Donotsimplymatchtimeseriestoplotswithoutafullexplanationofhowyoudidit.)(a)Xt=Zt0:8Zt1(b)Xt=sin2t12+t60+Zt(c)Xt=0:8Xt1+Zt0:8Zt1(d)Xt=0:34t++Zt(e)Xt=0:8Xt1+Zt(i)3(ii)(iii)4(iv)(v)5Answer:Timeseries(a)isaMA(1)processwith1=0:8.ThetheoreticalACFofsuchaprocesshasanegativevalueatlag1and,forallotherlags,avalueofzero.ThetheoreticalPACFofsuchaprocesshasnegativevaluesatalllagsthatdecaytozeroashincreases.ThebestmatchforthistimeseriesisthesampleACF/PACFinplot(iii).Timeseries(b)isnonstationaryasithasalineartrendcomponentandaseasonalcomponent.Thus,thetheoreticalACFofsuchaseriesdoesnotdecaytozeroandevolvessinusoidally.ThebestmatchforthistimeseriesisthesampleACF/PACFinplot(iv).Timeseries(c)isanARMA(1,1)processwith1=0:8and1=0:8.ThetheoreticalACFofsuchaprocesshasalargenegativevalueatlag1andtheACFatallsubsequentlagsoscillatesbetweenpositiveandnegativevaluesduetothefactthat10.ThetheoreticalPACFalsohasalargenegativevalueatlag1andwilldecayslowlytozeroduetothefactthat10.ThebestmatchforthistimeseriesisthesampleACF/PACFinplot(v).Timeseries(d)isalineartrendplusnoisesequence.ThetheoreticalACFofsuchaprocesshasallpositivevaluesthatdonotdecaytozero.ThebestmatchforthistimeseriesisthesampleACF/PACFinplot(i).Timeseries(e)isanAR(1)processwith1=0:8.ThetheoreticalACFofsuchaprocesshasapositivevalueatlag1andvaluesatallsubsequentlagsthatare1timesthepreviousvalue.ThetheoreticalPACFhasanonzerovalueatlag1andazerovalueatallsubsequentlags.Thebestmatchforthistimeseriesist

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功