最新北师大版七年级数学下第六章-概率初步分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

6.1感受可能性第六章概率初步思考下列事件(一):如果随机投掷一枚均匀的骰子,那么⒈掷出的点数会是10吗?你猜你想⒉掷出的点数一定不超过6吗?⒊掷出的点数一定是1吗?探究新知一思考下列事件(二):1.玻璃杯从10米高处落到水泥地面上会碎;3.今天星期天,明天星期一;2.太阳从东方升起;★这些事情我们事先肯定它一定会发生,这些事件称为必然事件。⒋太阳从西方升起;⒌一个数的绝对值小于0;探究新知一★这些事情我们事先肯定它一定不会发生,这些事件称为不可能事件。★必然事件和不可能事件都是确定事件。⒉掷一枚硬币,有国徽的一面朝上。⒊买彩票恰好中奖⒈从商店买的饮料中奖⒋通过点名器找同学回答问题,“××”被选中思考下列事件(三):探究新知二★这件事情我们事先无法肯定它会不会发生,这样的事件称为不确定事件,也称为随机事件。探究新知二游戏1:接力比赛比赛要求:1、组长决定接力顺序,并画“正”字记录每组的题数;2、掷骰子决定一名同学记时,必须在10秒内说出一个事件;①可以是确定事件(说明是必然事件还是不可事件);②也可以是不确定事件;3、以说的最多的小组获胜,事件贴近生活。游戏2:摸球甲袋中有10个白球,乙袋中有10个红球,丙袋中有红球、白球共10个,且三个袋中所有的球除颜色外,完全相同;甲乙丙判断下列事件各是什么事件:1.从甲袋中摸到一球是红球。()2.从甲袋中摸到一球是白球。()3.从乙袋中摸到一球是红球。()4.从乙袋中摸到一球是白球。()5.从丙袋中摸到一球是红球。()6.从丙袋中摸到一球是白球。()游戏2:摸球游戏2:摸球若丙盒中装有红球,白球共有10个,每个球除颜色外其他相同。每次任意摸出一个球,记录下所摸球的颜色,并将球放回到盒中。球的颜色红色白色摸到次数将结果填在下表中:丙◆在上面的摸球活动中,每次摸到的球的颜色是不确定的。◆如果红球和白球的数量不等,那么摸到红球的可能性与摸到白球的可能性是不一样的。★一般地,不确定事件发生的可能性是有大小的。可能性的大小新知探究三游戏3:掷骰子1游戏规则与表格参照教材1、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)两直线平行,内错角相等;(2)将油滴入水中,油会浮在水面上;(3)任意买一张电影票,座位号是2的倍数比座位号是5的倍数可能性大;(4)任意投掷一枚均匀的骰子,掷出的点数是奇数;检测提升(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)抛出的篮球会下落;(9)打开电视机,它正在播放动画。检测提升2、下面第一排表示了各袋中球的情况,请你用第二排的语言来描述摸到红球的可能性大小,并用线连起来。检测提升3、某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒。当人或车随意经过该路口时,遇到哪一种灯的可能性最大,遇到哪一种灯的可能性最小?根据什么?检测提升检测提升4、口袋里有10只黑袜子,6只白袜子,8只红袜子,任意摸出一只袜子,什么颜色袜子被摸出的可能性最大?5.有一些写着数字的卡片,他们的背面都相同,先将他们背面朝上,从中任意摸出一张:(1)摸到几号卡片的可能性最大?摸到几号卡片的可能性最小?(2)摸到的号码是奇数,和摸到的号码是偶数的可能性,哪个大?112241检测提升6.袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是()A.1B.3C.5D.10检测提升D畅谈收获布置作业6.2频率的稳定性(第1课时)抛掷一枚图钉,落地后会出现两种情况:钉尖朝上,钉尖朝下。你认为钉尖朝上和钉尖朝下的可能性一样大吗?小明和小丽在玩抛图钉游戏直觉告诉我任意掷一枚图钉,钉尖朝上和钉尖朝下的可能性是不相同的。我的直觉跟你一样,但我不知道对不对。不妨让我们用试验来验证吧!活动一:做一做(1)两人一组做20次掷图钉游戏,并将数据记录在下表中:试验总次数钉尖朝上次数钉尖朝下次数钉尖朝上频率(钉尖朝上次数/试验总次数)钉尖朝下频率(钉尖朝下次数/试验总次数)频率:在n次重复试验中,不确定事件A发生了m次,则比值称为事件发生的频率。(2)累计全班同学的实验2结果,并将试验数据汇总填入下表:试验总次数n204080120160200240280320360400钉尖朝上次数m钉尖朝上频率m/n(3)根据上表完成下面的折线统计图:2040801202002401603202800.24003601.00.60.80.4钉尖朝上的频率试验总次数2040801202002401603202800.24003601.00.60.80.4钉尖朝上的频率试验总次数(4)小明共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图像,钉尖朝上的频率的变化有什么规律?结论:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.活动二:议一议(1)通过上面的试验,你认为钉尖朝上和钉尖朝下的可能性一样大吗?你是怎样想的?(2)小明和小丽一起做了1000次掷图钉的试验,其中有640次钉尖朝上。据此,他们认为钉尖朝上的可能性比钉尖朝下的可能性大。你同意他们的说法吗?人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.频率的稳定性是由瑞士数学家雅布·伯努利(1654-1705)最早阐明的,他还提出了由频率可以估计事件发生的可能性大小。频率稳定性定理数学史实1、某射击运动员在同一条件下进行射击,结果如下表:射击总次数n1020501002005001000击中靶心的次数m9164188168429861击中靶心的频率m/n(1)完成上表;(2)根据上表画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率变化有什么规律?活动三:练一练2、某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?在同样条件下,大量地对这种幼树进行移植并统计成活情况,计算成活的频率.如果随着移植棵数的越来越大,频率越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值mn移植总数成活数成活的频率1080.850472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897(1)下表是统计试验中的部分数据,请补充完整:(2)由下表可以发现,幼树移植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.0.9(3)林业部门种植了该幼树1000棵,估计能成活_______棵.(4)我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_______棵.9005563.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4000名、5000名时分别计算了各种颜色的频率,绘制折线图如下:(1)随着调查次数的增加,红色的频率如何变化?随着调查次数的增加,红色的频率基本稳定在40%左右.(2)你能估计调查到10000名同学时,红色的频率是多少吗?估计调查到10000名同学时,红色的频率大约仍是40%左右.(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:2:1.数学理解抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性是否一样大?怎样才能验证自己结论的正确性?课堂总结:1、通过本节课的学习,你了解了哪些知识?2、在本节课的教学活动中,你获得了哪些活动体验?课后作业:教材145页知识技能1第六章概率初步6.2频率的稳定性(第2课时)1.举例说明什么是必然事件?。3.举例说明什么是不确定事件。2.举例说明什么是不可能事件。回顾与思考抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:你认为正面朝上和正面朝下的可能性相同吗?正面朝上正面朝下问题的引出试验总次数正面朝上的次数正面朝下的次数正面朝上的频率正面朝下的频率(1)同桌两人做20次掷硬币的游戏,并将记录记载在下表中:动起来!你能行。游戏环节:掷硬币实验(2)累计全班同学的试验结果,并将实验数据汇总填入下表:实验总次数20406080100120140160180200正面朝上的次数正面朝上的频率正面朝下的次数正面朝下的频率掷硬币实验204060801001201401601802000.20.40.50.60.81.0(3)根据上表,完成下面的折线统计图。掷硬币实验频率实验总次数(4)观察上面的折线统计图,你发现了什么规律?204060801001201401601802000.20.40.50.60.81.00.20.40.50.60.81.00.20.40.50.60.81.00.20.40.50.60.81.0真知灼见,源于实践当实验的次数较少时,折线在“0.5水平直线”的上下摆动的幅度较大,随着实验的次数的增加,折线在“0.5水平直线”的上下摆动的幅度会逐渐变小。频率实验总次数当试验次数很大时,正面朝上的频率折线差不多稳定在“0.5水平直线”上.(4)观察上面的折线统计图,你发现了什么规律?真知灼见,源于实践204060801001201401601802000.20.40.50.60.81.00.20.40.50.60.81.00.20.40.50.60.81.00.20.40.50.60.81.0试验者投掷次数n正面出现次数m正面出现的频率m/n布丰404020480.5069德∙摩根409220480.5005费勒1000049790.4979下表列出了一些历史上的数学家所做的掷硬币实验的数据:历史上掷硬币实验皮尔逊1200060190.5016皮尔逊24000120120.5005维尼30000149940.4998罗曼诺夫斯基80640396990.4923试验者投掷次数n正面出现次数m正面出现的频率m/n表中的数据支持你发现的规律吗?历史上掷硬币实验1、在实验次数很大时事件发生的频率,都会在一个常数附近摆动,这个性质称为频率的稳定性。2、我们把这个刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A)。一般的,大量重复的实验中,我们常用不确定事件A发生的频率来估计事件A发生的概率。学习新知事件A发生的概率P(A)的取值范围是什么?必然事件发生的概率是多少?不可能事件发生的概率又是多少?必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件A发生的概率P(A)是0与1之间的一个常数。想一想由上面的实验,请你估计抛掷一枚均匀的硬币,正面朝上和正面朝下的概率分别是多少?他们相等吗?学以致用对某批乒乓球的质量进行随机抽查,如下表所示:随机抽取的乒乓球数n1020501002005001000优等品数m7164381164414825优等品率m/n(1)完成上表;牛刀小试(2)根据上表,在这批乒乓球中任取一个,它为优等品的概率是多少?0.70.80.860.810.820.8280.8250.70.860.820.8250.70.86对某批乒乓球的质量进行随机抽查,如下表所示:(3)如果重新再抽取1000个乒乓球进行质量检查,对比上表记录下数据,两表的结果会一样吗?为什么?随机抽取的乒乓球数n1020501002005001000优等品数m7164381164414825优等品率m/n0.70.80.860.810.820.8280.825牛刀小试请选择一个你能完成的任务,并预祝你能出色的完成任务:NEXT是“玩家”就玩出水平1、下列事件发生的可能性为0的是()A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六D.

1 / 154
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功