第一章-函数、极限与连续考研真题(1989年-2018年-共计30年)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章函数、极限与连续考研真题(1989年-2018年)一、填空题1.(1989-2)0limcot2xxx______.2.(1989-2)设2,0()sin,0abxxfxbxxx在0x处连续,则常数a与b应满足的_____.3.(1990-1)设a为非零常数,则lim()xxxaxa=_____________.4.(1990-1,2)设函数1,||1,()0,||1,xfxx则[()]ffx=_____________.5.(1990-3,4)极限lim(3)nnnnn_________.6.(1990-3,4)设函数()fx有连续的导函数,(0)0,(0)ffb,若函数()sin,0,(),0fxaxxFxxAx在0x处连续,则常数A=___________.7.(1990-4)极限lim(3)nnnnn___________.8.(1991-1)已知当0x时,123(1)1ax与cos1x是等价无穷小,则常数a=__________.9.(1991-2)1101limxxxexe______.10.(1992-2)2011limcosxxxex______11.(1992-4)已知sinfxx,21fxx,则x的定义域为.12.(1993-2)0limlnxxx______.13.(1993-3)2352limsin53xxxx.14.(1993-4)lim1212(1)nnn.15.(1994-1)011limcot()sinxxxx_______.16.(1994-2)若2sin21,0,(),0axxexfxxax在(,)上连续,则a_______17.(1995-1)2sin0lim(13)xxx______________.18.(1995-2)22212lim()12nnnnnnnnnL______.19.(1995-2)曲线22xyxe的渐近线方程为______.20.(1995-4)设1limxtxxtedtx,则常数.21.(1996-1)设2lim()8xxxaxa,则a___________.22.(1996-2)31limsinln(1)sinln(1)xxxx______.23.(1997-1)2013sincoslim(1cos)ln(1)xxxxxx.24.(1997-2)已知2(cos),0,(),0xxxfxax在0x处连续,则a.25.(1998-1,2)20112limxxxx.26.(1998-2)曲线1ln()(0)yxexx的渐近线方程为.27.(1998-3,4)设曲线()nfxx在点(1,1)处的切线与x轴的交点为(,0)n,则lim()nnf.28.(1999-1)2011limtanxxxx29.(1999-4)设函数()xfxa(0a,1a),则21limln[(1)(2)()]xfffnn30.(2000-2)30arctanlim.ln(12)xxxx31.(2000-2)曲线1(21)xyxe的斜渐近线方程为.32.(2000-4)若0,0ab均为常数,则30lim2xxxxab.33.(2001-2)2131lim2xxxxx34.(2002-2)设函数tan210()arcsin20xxexxfxaex在0x处连续,则a______.35.(2002-2)12lim[1cos1cos1cos]nnnnnn=________36.(2002-3,4)设常数12a,则21limln.(12)nnnnana37.(2003-1))1ln(102)(coslimxxx=________.38.(2003-2)若0x时,1)1(412ax与xxsin是等价无穷小,则a=.39.(2003-3)设,0,0,0,1cos)(xxxxxf若若其导函数在0x处连续,则的取值范围是_______.40.(2003-4)极限xxx20)]1ln(1[lim=_________.41.(2004-2)设2(1)()lim1nnxfxnx,则()fx的间断点为x.42.(2004-3,4)若5)(cossinlim0bxaexxx,则a=____,b=______.43.(2005-1)曲线122xxy的斜渐近线方程为____________44.(2005-2)当0x时,2)(kxx与xxxxcosarcsin1)(是等价无穷小,则k=____________45.(2005-2)曲线xxy23)1(的斜渐近线方程为___________.46.(2005-3,4)极限12sinlim2xxxx=_________.47.(2006-1)0ln(1)lim1cosxxxx__________48.(2006-2)曲线4sin52cosxxyxx的水平渐近线方程为__________49.(2006-2)设函数2301sind,0(),0xttxfxxax    在0x处连续,则a________.50.(2006-3,4)11limnnnn__________51.(2007-2)30arctansinlimxxxx=.52.(2007-3,4)3231lim(sincos)2xxxxxxx__________.53.(2008-2)已知函数()fx连续,且201cos(sin)lim1(1)()xxxefx,则(0)f________54.(2008-3,4)设函数21,()2,xxcfxxcx在(,)内连续,则c.55.(2009-3)cos320lim11xxeex=___________56.(9)(2009-4)20lim(1sin)3xxx=________57.(2010-2)曲线3221xyx的渐近线方程为.58.(2010-4)limxxxxa.59.(2010-4)曲线222sincosxxyxx的水平渐近线的方程为y.60.(2011-2)1012lim()2xxx.61.(2012-2)22222111lim12nnnnnn.62.(2012-3)1cossin4limtanxxxx63.(2013-2)10ln(1)lim(2)xxxx.64.(2015-1,3)20ln(cos)lim__________.xxx65.(2016-1)__________cos1sin1lnlim200xdttttxx66.(2016-2)曲线322arctan11xyxx的斜渐近线方程为67.(2016-2,3)极限2112limsin2sinsinnnnnnnn68.(2016-3)已知函数()fx满足()sinlimxxfxxe3012121,则lim()____xfx069.(2017-2)曲线2(1arcsin)yxx的斜渐近线为.70.(2018-1)1sin01tanlim,1tankxxxex则k71.(2018-2)2lim[arctan(1)arctan]xxxx_________.二、选择题72.(1989-1,2)当0x时,曲线1sinyxx()(A)有且仅有水平渐近线(B)有且仅有铅直渐近线(C)既有水平渐近线,也有铅直渐近线(D)既无水平渐近线,也无铅直渐近线73.(1989-3,4)设232xxfx,则当0x时()(A)fx与x是等价无穷小量(B)fx与x是同阶但非等价无穷小量(C)fx是比x较高阶的无穷小量(D)fx是比x较低阶的无穷小量74.(1990-2)已知2lim01xxaxbx,其中,ab是常数,则()(A)1,1ab(B)1,1ab(C)1,1ab(D)1,1ab75.(1990-3)设函数sin()tanxfxxxe,则()fx是()(A)偶函数(B)无界函数(C)周期函数(D)单调函数76.(1991-4)设数列的通项为21nnn,nnx,nn为奇数,为偶数,则当n时,nx是()(A)无穷大量(B)无穷小量(C)有界变量(D)无界变量77.(1991-1,2)曲线2211xxeye()(A)没有渐近线(B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线78.(1991-3,4)下列各式中正确的是()(A)01lim11xxx(B)01lim1xxex(C)1lim1xxex(D)1lim1xxex79.(1992-1,2)当1x时,函数12111xxex的极限()(A)等于2(B)等于0(C)为(D)不存在但不为80.(1992-2)当0x时,sinxx是2x的()(A)低阶无穷小(B)高阶无穷小(C)等价无穷小(D)同阶但非等价的无穷小81.(1992-2)设22,0(),0xxfxxxx,则()(A)22,0()(),0xxfxxxx(B)22(),0(),0xxxfxxx(C)22,0(),0xxfxxxx(D)22,0(),0xxxfxxx82.(1992-3,4)当0x时,下面四个无穷小量中,哪一个是比其他三个更高阶的无穷小量?()(A)2x(B)1cosx(C)211x(D)tanxx83.(1993-2)当0x时,变量211sinxx是()(A)无穷小(B)无穷大(C)有界的,但不是无穷小(D)无界的,但不是无穷大84.(1994-1)20tan(1cos)lim2ln(12)(1)xxaxbxcxde,其中220ac,则必有()(A)4bd(B)4bd(C)4ac(D)4ac85.(1994-2)设220ln(1)()lim2xxaxbxx,则()(A)51,2ab(B)0,2ab(C)50,2ab(D)1,2ab86.(1994-2,3,4)曲线2121arctan(1)(2)xxxyexx的渐近线有()(A)1条(B)2条(C)3条(D)4条87.(1995-2)设()fx和()x在(,)内有定义,()fx为连续函数,且()0fx,()x有间断点,则()(A)[()]fx必有间断点(B)2[()]x必有间断点(C)[()]fx必有间断点(D)()()xfx必有间断点88.(1996-2)设当0x时,2(1)xeaxbx是比2x高阶的无穷小,则()(A)1,12ab(B)1,1ab(C)1,12ab(D)1,1ab89.(1997-2)设0x时,

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功