函数的奇偶性优秀课件PPT

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

复习回顾初中我们已经学习过轴对称图形和中心对称图形,那么什么是轴对称图形和中心对称图形呢?轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。观察下图,思考并讨论以下问题:(1)这两个函数图象有什么共同特征吗?(2)相应的两个函数值对应表是如何体现这些特征的?怎样用函数的解析式来描述这种特征呢?f(-3)f(3)f(-2)f(2)f(-1)f(1)f(x)=x2f(x)=|x|实际上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x),这时我们称函数y=x2为偶函数.===f(-3)f(3)f(-2)f(2)f(-1)f(1)===1.偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.例如,函数都是偶函数,它们的图象分别如下图(1)、(2)所示.222()1,()11fxxfxx偶函数的图象关于y轴对称观察函数f(x)=x和的图象(下图),你能发现两个函数图象有什么共同特征吗?f(-3)=-3=-f(3)f(-2)=-2=-f(2)f(-1)=-1=-f(1)实际上,对于R内任意的一个x,都有f(-x)=-x=-f(x),这时我们称函数y=x为奇函数.f(-3)=-1/3=-f(3)f(-2)=-1/2=-f(2)f(-1)=-1=-f(1)1()fxx2.奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)就叫做奇函数.奇函数的图象关于原点对称例1、判断下列函数的奇偶性:2541)()4(1)()3()()2()()1(xxfxxxfxxfxxf(1)解:定义域为R∵f(-x)=(-x)4=f(x)即f(-x)=f(x)∴f(x)偶函数(2)解:定义域为Rf(-x)=(-x)5=-x5=-f(x)即f(-x)=-f(x)∴f(x)奇函数(3)解:定义域为{x|x≠0}∵f(-x)=-x+1/(-x)=-f(x)即f(-x)=-f(x)∴f(x)奇函数(4)解:定义域为{x|x≠0}∵f(-x)=1/(-x)2=f(x)即f(-x)=f(x)∴f(x)偶函数3.利用定义判断函数奇偶性的格式步骤1)首先确定函数的定义域,并判断其定义域是否关于原点对称;(如果定义域不关于原点对称,则函数非奇非偶,下面的步骤就不用)2)确定f(-x)与f(x)的关系;3)作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:1、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质.对于定义域里任意一个x都成立;2、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).例如y=x2,x∈[-1,2]为非奇非偶函数3、奇、偶函数定义的逆命题也成立,即若f(x)为奇函数,则有f(-x)=-f(x)成立.若f(x)为偶函数,则有f(-x)=f(x)成立.4、如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性.5.若奇函数在x=0时有定义,则必有f(0)=06.存在既是奇函数又是偶函数的函数。7.函数按照奇偶性可以分为:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数四类。4.奇偶函数图象的性质1、奇函数的图象关于原点对称.反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数.2、偶函数的图象关于y轴对称.反过来,如果一个函数的图象关于y轴对称,那么就称这个函数为偶函数.说明:奇偶函数图象的性质可用于:a、简化函数图象的画法.b、判断函数的奇偶性例2、已知函数y=f(x)是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象.xy0解:画法略xy0相等若y=f(x)是奇函数呢?课堂练习23222(1)()[1,3](2)()1(3)()4+4(4)()115()0fxxxxxfxxfxxxfxxxfx()1.判断下列函数的奇偶性:2.若f(x)在R上为偶函数,当x∈(-∞,0)时,f(x)=x-x4;则当x∈(0,+∞)时,f(x)=.-x-x4本课小结1、两个定义:对于f(x)定义域内的任意一个x,如果都有f(-x)=-f(x)f(x)为奇函数如果都有f(-x)=f(x)f(x)为偶函数2、两个性质:一个函数为奇函数它的图象关于原点对称一个函数为偶函数它的图象关于y轴对称再见

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功