2017届高考物理一轮复习专题三牛顿运动定律考点三连接体问题教学案含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1考点三连接体问题基础点知识点1连接体1.定义:多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的物体系统称为连接体。连接体一般具有相同的运动情况(速度、加速度)。如下图所示:2.处理连接体问题的方法:整体法与隔离法,要么先整体后隔离,要么先隔离后整体。(1)整体法是指系统内(即连接体内)物体间无相对运动时(具有相同加速度),可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,对整体列方程求解的方法。整体法可以求系统的加速度或外界对系统的作用力。(2)隔离法是指当我们所研究的问题涉及多个物体组成的系统时,需要求连接体内各部分间的相互作用力,从研究方便出发,把某个物体从系统中隔离出来,作为研究对象,分析其受力情况,再列方程求解的方法。隔离法适合求系统内各物体间的相互作用力或各个物体的加速度。3.整体法、隔离法的选取原则(1)整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量)。(2)隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解。(3)整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力。即“先整体求加速度,后隔离求内力”。知识点2临界与极值1.临界问题物体由某种物理状态转变为另一种物理状态时,所要经历的一种特殊的转折状态,称为临界状态。这种从一种状态变成另一种状态的分界点就是临界点,此时的条件就是临界条件。在应用牛顿运动定律解决动力学的问题中,当物体的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”“最小”“刚好”“恰好出现”或“恰好不出现”等词语时,常常会涉及临界问题。2.产生临界(极值)问题的条件2(1)接触与脱离的临界(极值)条件:两物体相接触或脱离,临界(极值)条件是:弹力FN=0。(2)相对滑动的临界(极值)条件;两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界(极值)条件是:静摩擦力达到最大值。(3)绳子断裂与松弛的临界(极值)条件:绳子所能承受的张力是有限的,绳子断与不断的临界(极值)条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界(极值)条件是FT=0。(4)加速度最大与速度最大的临界(极值)条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。当出现速度有最大值或最小值的临界(极值)条件时,物体处于临界(极值)状态,所对应的速度便会出现最大值或最小值。重难点一、连接体问题1.常见类型(1)涉及滑轮类的问题这类问题中一般都忽略绳、滑轮的重力和摩擦力,且滑轮的大小忽略不计。若要求绳的拉力,一般都必须采用隔离法。绳跨过定滑轮,连接的两物体虽然加速度大小相同但方向不同,可以先整体求a的大小,再隔离求FT。如图所示,可由整体法列方程为(m1-m2)g=(m1+m2)a⇒a=m1-m2gm1+m2,再隔离m1(或m2)求FT,有m1g-FT=m1a⇒FT=2m1m2gm1+m2(2)水平面上的连接体问题①这类问题一般多是连接体(系统)中各物体保持相对静止,即具有相同的加速度。解题时,一般采用先整体、后隔离的方法。②建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度。(3)斜面体与上面的物体类连接体问题斜面体(或称为劈形物体、楔形物体)与在斜面体上物体组成的连接体(系统)的问题,一般为物体与斜面体的加速度不同,其中最多的是物体具有加速度,而斜面体静止的情况。解题时,可采用隔离法,但是相当麻烦,因涉及的力过多。如果问题不涉及物体与斜面体的相3互作用,则采用整体法用牛顿第二定律求解。2.解题思路(1)分析所研究的问题适合应用整体法还是隔离法。处理各物体加速度都相同的连接体问题时,整体法与隔离法往往交叉使用,一般思路是:①求内力时,先用整体法求加速度,再用隔离法求物体间的作用力。②求外力时,先用隔离法求加速度,再用整体法求整体受到外加的作用力。(2)对整体或隔离体进行受力分析,应用牛顿第二定律确定整体或隔离体的加速度。(3)结合运动学方程解答所求解的未知物理量。3.必避误区(1)对连接体进行受力分析时误认为力可以通过物体传递,如用水平力F推M及m一起前进(如图甲所示),隔离m受力分析时误认为力F通过M作用到m上。(2)不理解轻绳、轻弹簧与有质量的绳、弹簧的区别,如用水平力F通过质量为m的弹簧秤拉物体M在光滑水平面上加速运动时(如图乙所示),往往误认为弹簧秤拉物体的力等于F,实际上此时弹簧秤拉物体M的力为T=F-ma,也就是说只有在弹簧秤质量不计时两者才相等。(3)不能正确建立坐标系,对加速度或力进行分解。特别提醒如图甲、乙所示的情景中,无论地面或斜面是否光滑,只要力F拉着物体m1、m2一起加速,由整体及隔离法可证明:总有F内=m1m1+m2F,即动力的效果按与质量成正比的规律分配。这个常见的结论叫动力分配原理。二、临界(极值)类问题1.问题说明(1)在物体的运动状态发生变化的过程中,往往达到某一个特定状态时,有关的物理量将发生突变,此状态即为临界状态,相应的物理量的值为临界值。临界状态一般比较隐蔽,4它在一定条件下才会出现。(2)解决此类问题时,一般先以某个状态(非临界状态)为研究对象,进行受力和运动情况的分析,利用极限法对某一物理量推导极大或极小值,找到临界状态,再根据牛顿运动定律分析求解。2.常见类型及举例说明(1)相互接触的两物体脱离的临界条件是相互作用的弹力为零,即N=0。例如,图甲中,当斜面以多大加速度向右加速运动时,小球与斜面间的作用力为零?分析:当小球随斜面加速运动,支持力减小,以获得水平合外力,当加速度足够大时,小球与斜面间作用力为零时,如图乙所示,可得F合=mgtanθ,所以a=F合m=gtanθ。(2)绳子松弛的临界条件是绳中张力为零,即T=0。例如,图丙中,当斜面以多大加速度向左运动时,绳对小球的拉力为零?分析:当小球随斜面向左加速运动,则绳的拉力将减小,支持力增大,以获得水平向左加速度,加速度足够大时,小球可能沿斜面上移,绳的拉力为零,如图丁所示,可得F合=mgtanθ,所以a=F合m=gtanθ。(3)存在静摩擦力的连接系统,相对静止与相对滑动的临界条件是静摩擦力达到最大值,即f静=fm。5例如,图中水平面光滑,A、B质量相等为m,A、B间最大静摩擦力为f,则F为多少时,A、B发生相对运动。分析:力F很小时,加速度小,A对B的摩擦力小,A、B一起运动。随着力F增大,加速度a增大,A对B的摩擦力增大,最大静摩擦力是极限,此时aB=fm,A、B恰不发生相对运动,a=aB,则F=2ma=2f。(4)加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大(小)时,具有最大(小)加速度;当加速度与速度方向一致时,物体加速,当a=0时,速度达最大;当加速度与速度方向相反时,物体减速,当a=0时,速度达最小。例如:自由下落的小球下落一段时间后与弹簧接触,从它开始接触弹簧到弹簧压缩到最短的过程中,加速度和速度的变化情况讨论如下:①小球接触弹簧上端后受两个力作用:向下的重力和向上的弹力。在接触后的前一阶段,重力大于弹力,合力向下,因为弹力F=kx不断增大,所以合力不断变小,故加速度也不断减小,由于加速度与速度同向,因此速度不断变大。②当弹力逐渐增大到与重力大小相等时,合外力为零,加速度为零,速度达到最大。(注意:此位置是两个阶段的转折点)③后一阶段,即小球达到上述平衡位置之后,由于惯性仍继续向下运动,弹力大于重力,合力向上,且逐渐变大,因而加速度逐渐变大,方向向上,小球做减速运动,因此速度逐渐减小到零,到达最低点时,弹簧的压缩量最大。特别提醒(1)有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点。(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在6着“起止点”,而这些起止点往往就对应临界状态。(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点。(4)若题目要求“最终加速度”“稳定加速度”等,即是求收尾加速度或收尾速度。3.解决临界(极值)问题的基本思路(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界(极值)状态,分析临界(极值)条件,找出临界(极值)关系。特别提醒解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,挖掘隐含的条件是解题的关键,要特别注意可能出现的多种情况。三、滑块——木板类问题1.类型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。2.“滑块——木板类”问题的分析思路3.滑块与滑板类问题的解法说明(1)判断滑块与滑板间是否存在相对滑动是思考问题的着眼点,方法有整体法、隔离法、假设法等。即先假设滑块与滑板相对静止,然后根据牛顿第二定律求出滑块与滑板之间的摩擦力,再分析滑块与滑板之间的摩擦力是不是大于最大静摩擦力。(2)滑块与滑板存在相对滑动的临界条件①运动学条件:若两物体速度或加速度不等,则会相对滑动。7②力学条件:一般情况下,假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出滑块“所需要”的摩擦力Ff,比较Ff与最大静摩擦力Ffm的关系,若FfFfm,则发生相对滑动。③滑块滑离滑板的临界条件当滑板的长度一定时,滑块可能从滑板滑下,恰好滑到滑板的边缘达到共同速度是滑块滑离滑板的临界条件。特别提醒此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口。求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。1.思维辨析(1)整体法和隔离法是指选取研究对象的方法。()(2)只有相对静止的物体才可以看成一个整体系统。()(3)“恰好出现”与“恰好不出现”指物体的所处状态相同。()(4)整体法与隔离法可以相互代替,只是繁简不同。()(5)子弹打木块的相关问题可以归结为滑块滑板类问题。()(6)连接体问题包含滑块—滑板类问题。()(7)临界问题往往出现在连接体问题中。()(8)连接体问题、临界问题、滑块—滑板类问题都独立于牛顿运动定律问题。()答案(1)√(2)×(3)√(4)×(5)√(6)√(7)√(8)×2.如图所示,a、b两物体的质量分别为m1和m2,由轻质弹簧相连。当用恒力F竖直向上拉着a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x1,加速度大小为a1;当用大小仍为F的恒力沿水平方向拉着a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,加速度大小为a2。则有()A.a1=a2,x1=x2B.a1<a2,x1=x28C.a1=a2,x1>x2D.a1<a2,x1>x2答案B解析对a、b物体及弹簧整体分析,有:a1=F-m1+m2gm1+m2=Fm1+m2-g,a2=Fm1+m2,可知a1<a2,再隔离b分析,有:F1-m2g=m2a1,解得:F1=m2Fm1+m2,F2=m2a2=m2Fm1+m2,可知F1=F2,再由胡克定律知,x1=x2。所以B选项正确。3.(多选)如图所示,光滑的水平地面上有三块木块a、b、c,质量均为m,a、c之间用轻质细绳连接。现用一水平恒力F作用在b上,三者开始一起做匀加速运动,运动过程中把一块橡皮泥粘在某一木块上面。系统仍加速运动,且始终没有相对滑

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功