学习笔记(信号与系统)第一章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来自外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。2、系统(system):是指若干相互关联的事物组合而成具有特定功能的整体。3、信号的描述——数学描述,波形描述。信号的分类:1)确定信号(规则信号)和随机信号确定信号或规则信号——可以用确定时间函数表示的信号;随机信号——若信号不能用确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。2)连续信号和离散信号连续时间信号——在连续的时间范围内(-∞t∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。3)周期信号和非周期信号周期信号——是指一个每隔一定时间T,按相同规律重复变化的信号;非周期信号——不具有周期性的信号称为非周期信号。4)能量信号与功率信号能量信号——信号总能量为有限值而信号平均功率为零;功率信号——平均功率为有限值而信号总能量为无限大。5)一维信号与多维信号信号可以表示为一个或多个变量的函数,称为一维或多维函数。6)因果信号若当t0时f(t)=0,当t0时f(t)≠0的信号,称为因果信号;非因果信号指的是在时间零点之前有非零值。4、信号的基本运算:信号的+、-、×运算:两信号f1(·)和f2(·)的相+、-、×指同一时刻两信号之值对应相加减乘。平移:将f(t)→f(t+t0)称为对信号f(·)的平移或移位,若t00,则将f(·)右移,否则左移。反转:将f(t)→f(–t)或f(k)→f(–k)称为对信号f(·)的反转或反折,从图形上看是将f(·)以纵坐标为轴反转180°。尺度变换(横坐标展缩):将f(t)→f(at),称为对信号f(t)的尺度变换。若a1,则f(at)将f(t)的波形沿时间轴压缩至原来的1/a;若0a1,则f(at)将f(t)的波形沿时间轴扩展为原来的a倍。微分:信号f(t)的微分运算指f(t)对t取导数,即:信号经过微分运算后突出显示了它的变化部分,起到了锐化的作用。积分:信号f(t)的积分运算指f(t)在(-∞,t)区间内的定积分,表达式为:信号经过积分运算后,使得信号突出变化部分变得平滑了,起到了模糊的作用,利用积分可以削弱信号中噪声的影响。5、典型的连续时间信号1)实指数信号:(对时间的微、积分仍是指数。)a0时,信号将随时间而增长;a0时,信号将随时间而衰减;a=0时,信号不随时间而变化,为直流信号。τ是指数信号的时间常数,τ越大,指数信号增长或衰减的速率越慢。2)正弦信号:对时间的微、积分仍是同频率正弦。3)复指数信号:()实际不存在,但可以用于描述各种信号。σ0时,增幅振荡正、余弦信号;σ0时,衰减振荡正、余弦信号;σ=0时等振幅振荡正、余弦信号;ω=0时,实指数信号;σ=0且ω=0时,直流信号。4)抽样信号:Sa(t)具有以下性质:,;Sa(0)=1,Sa(t)=0(t=±π,±2π,…)。5)钟形信号:6、单位阶跃函数和单位冲激函数1)单位阶跃函数:可以方便地表示某些信号,用阶跃函数表示信号的作用区间,积分计算;○1单位冲激函数为偶函数:;○2加权特性:○3抽样特性:,;○4尺度变换:,,,;○5导数(冲激偶):,冲激偶的抽样特性:,,冲激偶的加权特性:,。2)单位冲激函数:单位冲激函数是个奇异函数,它是对强度极大,作用时间极短一种物理量的理想化模型。3)冲激函数与阶跃函数关系:阶跃函数序列与冲激函数序列。7、信号的分解直流分量fD与交流分量fA(t):,其中fD为直流分量即信号的平均值。偶分量与奇分量:,其中fe=为偶分量,fo=为奇分量。脉冲分量一种分解为矩形窄脉冲分量:,另一分解为阶跃信号分量之叠加。实部分量与虚部分量:对于瞬时值为复数的信号f(t)可分解为实、虚部两个部分之和。正交函数分量:,用正交函数集来表示一个信号,组成信号的各分量就是相互正交的。8、系统:若干相互作用、相互联系的事物按一定规律组成具有特定功能的整体称为系统。9、系统的分类及性质连续系统与离散系统:输入和输出均为连续时间信号的系统称为连续时间系统;输入和输出均为离散时间信号的系统称为离散时间系统。连续时间系统的数学模型是用微分方程来描述,而离散时间系统的数学模型是用差分方程来描述。动态系统与即时系统:若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关,则称为动态系统或记忆系统;含有记忆元件(电容、电感等)的系统是动态系统,否则称即时系统或无记忆系统。线性系统与非线性系统:能同时满足齐次性与叠加性的系统称为线性系统。满足叠加性是线性系统的必要条件;不能同时满足齐次性与叠加性的系统称为非线性系统。时不变系统与时变系统:满足时不变性质的系统称为时不变系统。时不变性质:若系统满足输入延迟多少时间,其激励引起的响应也延迟多少时间。因果系统与非因果系统:激励引起的响应不会出现在激励之前的系统,称为因果系统;也就是说,如果响应r(t)并不依赖于将来的激励[如e(t+1)],那么系统就是因果的。稳定系统与不稳定系统:一个系统,若对有界的激励f(.)所产生的响应y=f(.)也是有界时,则称该系统为有界输入有界输出稳定,简称稳定;即若│f(.)│∞,其│yf(.)│∞,则称系统是稳定的。线性时不变系统:LTI连续系统的微分特性和积分特性线性性质包括两方面:齐次性和可加性,若系统既是齐次的又是可加的,则称该系统是线性的,即T[af1(·)+bf2(·)]=aT[f1(·)]+bT[f2(·)]。当动态系统满足下列三个条件时该系统为线性系统:可分解性+零状态线性+零输入线性。10、描述连续动态系统的数学模型是微分方程,描述离散动态系统的数学模型是差分方程。解析描述-系统模拟框图描述。11、系统分析研究的主要问题:对给定的具体系统,求出它对给定激励的响应;也可以说,系统分析就是建立表征系统的数学方程并求出解答。采用的数学工具:卷积积分与卷积和,傅里叶变换,拉普拉斯变换,Z变换。第二章连续系统的时域分析微分方程的经典解法0+和0-初始值零输入响应与零状态响应冲激响应和阶跃响应卷积积分1、微分方程的一般形式:微分方程的经典解:y(t)(完全解)=yh(t)(齐次解)+yp(t)(特解)齐次解是齐次微分方程的解,yh(t)的函数形式由上述微分方程的特征根确定,而特解的函数形式与激励函数的形式有关。齐次解的函数形式仅与系统本身的特性有关,而与激励f(t)数形式无关,称为系统的固有响应或自由响应;特解的函数形式由激励确定,称为强迫响应。2、全响应=齐次解(自由响应)+特解(强迫响应)。齐次解:写出特征方程,求出特征根(自然频率或固有频率);根据特征根的特点,齐次解有不同的形式;一般形式(无重根):特解:根据输入信号的形式有对应特解的形式,用待定系数法确定;在输入信号为直流和正弦信号时,特解就是稳态解。用初始值确定积分常数,一般情况下,n阶方程有n个常数,可用n个初始值确定。3、0-状态称为零输入时的初始状态,即初始值是由系统的储能产生的;0+状态称为加入输入后的初始状态,即初始值不仅有系统的储能,还受激励的影响。从0-状态到0+状态的跃变:当系统已经用微分方程表示时,系统的初始值从0-状态到0+状态有没有跳变决定于微分方程右端自由项是否包含δ(t)及其各阶导数;如果包含有δ(t)及其各阶导数,说明相应的0-状态到0+状态发生了跳变。0+状态的确定:已知0-状态求0+状态的值,可用冲激函数匹配法;求0+状态的值还可以用拉普拉斯变换中的初值定理求出。4、各种响应用初始值确定积分常数:在经典法求全响应的积分常数时,用的是0+状态初始值;在求系统零输入响应时,用的是0-状态初始值;在求系统零状态响应时,用的是0+状态初始值,这时的零状态是指0-状态为零。5、冲激函数匹配法:目的:用来求解初始值,求(0+)和(0-)时刻值的关系;应用条件:如果微分方程右边包含δ(t)及其各阶导数,那么(0+)时刻的值不一定等于(0-)时刻的值;原理:利用t=0时刻方程两边的δ(t)及各阶导数应该平衡的原理来求解(0+)。6、零输入响应:没有外加激励信号的作用,只有起始状态所产生的响应;零状态响应:不考虑起始时刻系统储能的作用,由系统外加激励信号所产生的响应;LTI的全响应:y(t)=yx(t)+yf(t)。1)零输入响应,即求解对应齐次微分方程的解:当特征方程的根(特征根)为n个单根(不论实根、虚根、复数根)λ1,λ2,…,λn时,则yx(t)的通解表达式为:当特征方程的根(特征根)为n个重根(不论实根、虚根、复数根)λ1=λ2=…=λn时,yx(t)的通解表达式为:步骤总结:求系统的特征根,写出yx(t)的通解表达式;由于激励为零,所以零输入的初始值:,确定积分常数C1、C2、…、Cn;将确定出的积分常数C1、C2、…、Cn代入通解表达式,即得yx(t)。2)零状态响应,即求解对应非齐次微分方程的解:基本步骤:求系统的特征根,写出的通解表达式yfh(t);根据f(t)的形式,确定特解形式,代入方程解得特解yfp(t);求全解,若方程右边有冲激函数(及其各阶导数)时,根据冲激函数匹配法求得,确定积分常数C1、C2、…、Cn;将确定出的积分常数C1、C2、…、Cn代入全解表达式,即得。几种典型自由项函数相应的特解:7、系统响应划分:自由响应(Natural)+强迫响应(forced);暂态响应(Transient)+稳态响应(Steady-state);零输入响应(Zero-input)+零状态响应(Zero-state)。零输入响应是自由响应的一部分,零状态响应有自由响应的一部分和强迫响应构成。8、冲激响应:系统在单位冲激信号δ(t)作用下产生的零状态响应,称为单位冲激响应,简称冲激响应,一般用h(t)表示。阶跃响应:系统在单位阶跃信号u(t)作用下的零状态响应,称为单位阶跃响应,简称阶跃响应,一般用g(t)表示。阶跃响应与冲激响应的关系:线性时不变系统满足微、积分特性、。阶跃响应是冲击响应的积分,注意积分限,对于因果系统为。9、任意信号的分解:任意信号作用下的零状态响应:卷积定义:已知定义在区间(–∞,∞)上的两个函数f1(t)和f2(t),则定义积分:()于是,任意信号的零状态响应即为:卷积的计算步骤可分解为四步:1)换元:t换为τ→得f1(τ)、f2(τ);2)反转平移:由f2(τ)反转→f2(–τ)右移t→f2(t-τ);3)乘积:f1(τ)*f2(t-τ);4)积分:τ从–∞到∞对乘积项积分。10、卷积的性质交换律:ƒ1(t)*ƒ2(t)=ƒ2(t)*ƒ1(t);分配律:ƒ1(t)*[ƒ2(t)+ƒ3(t)]=ƒ1(t)*ƒ2(t)+ƒ1(t)*ƒ3(t);结合律:[ƒ1(t)*ƒ2(t)]*ƒ3(t)=ƒ1(t)*[ƒ2(t)*ƒ3(t)];微分性质:;积分性质:;微积分性质:;应用微积分性质的条件是必须成立,即必须有。f(t)与冲激函数的卷积:ƒ(t)*δ(t)=f(t);ƒ(t)*δ(t-t0)=ƒ(t-t0);ƒ(t-t1)*δ(t-t2)=ƒ(t-t1-t2);δ(t-t1)*δ(t-t2)=δ(t-t1-t2)。f(t)与冲激偶函数的卷积:ƒ(t)*δ'(t)=f'(t)*δ(t)=ƒ'(t);ƒ(t)*δ''(t)=ƒ(t)。f(t)与阶跃函数的卷积:;。时移性质:若ƒ1(t)*ƒ2(t)=ƒ(t),则有ƒ1(t-t1)*ƒ2(t-t2)=ƒ(t-t1-t2)。利用卷积积分的性质来计算卷积积分,可使卷积积分的计算大大简化。第三章频域分析第一节引言1、从本章开始由时域转入变换域分析。首先讨论傅里叶变换,傅里叶变换是在傅里