2007年全国1卷文科数学含答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件AB,互斥,那么球的表面积公式()()()PABPAPB24πSR如果事件AB,相互独立,那么其中R表示球的半径()()()PABPAPB球的体积公式如果事件A在一次试验中发生的概率是P,那么34π3VRn次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(012)kknknnPkCppnn,,,,一、选择题(1)设210Sxx,350Txx,则ST()A.B.12xxC.53xxD.1523xx(2)是第四象限角,12cos13,sin()A.513B.513C.512D.512(3)已知向量(56),a,(65),b,则a与b()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40),,(40),,则双曲线方程为()A.221412xyB.221124xyC.221106xyD.221610xy(5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种(6)下面给出四个点中,位于1010xyxy,表示的平面区域内的点是()A.(02),B.(20),C.(02),D.(20),(7)如图,正四棱柱1111ABCDABCD中,12AAAB,则异面直线1AB与1AD所成角的余弦值为()A.15B.25C.35D.45(8)设1a,函数()logafxx在区间2aa,上的最大值与最小值之差为12,则a()A.2B.2C.22D.4(9)()fx,()gx是定义在R上的函数,()()()hxfxgx,则“()fx,()gx均为偶函数”是“()hx为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cosyx的一个单调增区间是()A.ππ44,B.π02,C.π3π44,D.ππ2,(11)曲线313yxx在点413,处的切线与坐标轴围成的三角形面积为()A.19B.29C.13D.23(12)抛物线24yx的焦点为F,准线为l,经过F且斜率为3的直线与抛物线在x轴上方的部分相交于点A,AKl⊥,垂足为K,则AKF△的面积是()A.4B.33C.43D.81A1D1C1BDBCA第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为_____.(14)函数()yfx的图像与函数3log(0)yxx的图像关于直线yx对称,则()fx____________.(15)正四棱锥SABCD的底面边长和各侧棱长都为2,点S,A,B,C,D都在同一个球面上,则该球的体积为_________.(16)等比数列{}na的前n项和为nS,已知1S,22S,33S成等差数列,则{}na的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,2sinabA.(Ⅰ)求B的大小;(Ⅱ)若33a,5c,求b.(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.(19)(本小题满分12分)四棱锥SABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD,已知45ABC,2AB,22BC,3SASB.(Ⅰ)证明:SABC;(Ⅱ)求直线SD与平面SBC所成角的大小.SCDAB(20)(本小题满分12分)设函数32()2338fxxaxbxc在1x及2x时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的[03]x,,都有2()fxc成立,求c的取值范围.(21)(本小题满分12分)设{}na是等差数列,{}nb是各项都为正数的等比数列,且111ab,3521ab,5313ab(Ⅰ)求{}na,{}nb的通项公式;(Ⅱ)求数列nnab的前n项和nS.(22)(本小题满分12分)已知椭圆22132xy的左、右焦点分别为1F,2F,过1F的直线交椭圆于B,D两点,过2F的直线交椭圆于A,C两点,且ACBD,垂足为P.(Ⅰ)设P点的坐标为00()xy,,证明:2200132xy;(Ⅱ)求四边形ABCD的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D2.B3.A4.A5.C6.C7.D8.D9.B10.D11.A12.C二、填空题13.0.2514.3()xxR15.4π316.13三、解答题17.解:(Ⅰ)由2sinabA,根据正弦定理得sin2sinsinABA,所以1sin2B,由ABC△为锐角三角形得π6B.(Ⅱ)根据余弦定理,得2222cosbacacB2725457.所以,7b.18.解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则A表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064PA,()1()10.0640.936PAPA.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01BBB.30()0.60.216PB,1213()0.60.40.432PBC.01()()PBPBB01()()PBPB0.2160.4320.648.19.解法一:(1)作SOBC⊥,垂足为O,连结AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SASB,所以AOBO,又45ABC∠,故AOB△为等腰直角三角形,AOBO⊥,由三垂线定理,得SABC⊥.(Ⅱ)由(Ⅰ)知SABC⊥,依题设ADBC∥,故SAAD⊥,由22ADBC,3SA,2211SDADSA.又sin452AOAB,作DEBC⊥,垂足为E,则DE⊥平面SBC,连结SE.ESD∠为直线SD与平面SBC所成的角.222sin1111EDAOESDSDSD∠所以,直线SD与平面SBC所成的角为22arcsin11.解法二:(Ⅰ)作SOBC⊥,垂足为O,连结AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SASB,所以AOBO.又45ABC∠,AOB△为等腰直角三角形,AOOB⊥.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系Oxyz,因为222AOBOAB,221SOSBBO,又22BC,所以(200)A,,,(020)B,,,(020)C,,.(001)S,,,(201)SA,,,(0220)CB,,,0SACB,所以SABC⊥.DBCASOxyzDBCASOE(Ⅱ)(2221)SDSAADSACB,,,(200)OA,,.OA与SD的夹角记为,SD与平面ABC所成的角记为,因为OA为平面SBC的法向量,所以与互余.22cos11OASDOASD,22sin11,所以,直线SD与平面SBC所成的角为22arcsin11.20.解:(Ⅰ)2()663fxxaxb,因为函数()fx在1x及2x取得极值,则有(1)0f,(2)0f.即6630241230abab,.解得3a,4b.(Ⅱ)由(Ⅰ)可知,32()29128fxxxxc,2()618126(1)(2)fxxxxx.当(01)x,时,()0fx;当(12)x,时,()0fx;当(23)x,时,()0fx.所以,当1x时,()fx取得极大值(1)58fc,又(0)8fc,(3)98fc.则当03x,时,()fx的最大值为(3)98fc.因为对于任意的03x,,有2()fxc恒成立,所以298cc,解得1c或9c,因此c的取值范围为(1)(9),,.21.解:(Ⅰ)设na的公差为d,nb的公比为q,则依题意有0q且4212211413dqdq,,解得2d,2q.所以1(1)21nandn,112nnnbq.(Ⅱ)1212nnnanb.122135232112222nnnnnS,①3252321223222nnnnnS,②②-①得22122221222222nnnnS,221111212212222nnn1111212221212nnn12362nn.22.证明(Ⅰ)椭圆的半焦距321c,由ACBD⊥知点P在以线段12FF为直径的圆上,故22001xy,所以,222200001132222xyxy≤.(Ⅱ)(ⅰ)当BD的斜率k存在且0k时,BD的方程为(1)ykx,代入椭圆方程22132xy,并化简得2222(32)6360kxkxk.设11()Bxy,,22()Dxy,,则B1FO2FPDAyxC2122632kxxk,21223632kxxk,2222122212243(1)1(1)()432kBDkxxkxxxxk;因为AC与BC相交于点p,且AC的斜率为1k.所以,2222143143(1)12332kkACkk.四边形ABCD的面积222222222124(1)(1)962(32)(23)25(32)(23)2kkSBDACkkkk≥.当21k时,上式取等号.(ⅱ)当BD的斜率0k或斜率不存在时,四边形ABCD的面积4S

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功