人教版小学数学六年级下册数与代数总复习知识梳理数的认识数与代数数的运算式与方程常见的量比和比例数学思考主要内容:一、数的认识小数整数分数百分数正整数负整数0自然数有限小数无限小数循环小数无限不循环小数:π混循环小数纯循环小数真分数假分数整数带分数负数数的认识“像…,-3,-2,-1,0,1,2,3…”这样的数统称为整数。(1)5.236236……是(纯循环)小数,可简写成()。(2)3.1555……是(混循环)小数,可简写成()。513...3625.把3米长的钢管平均锯成5段,每段是这根钢管的(),每段长()米。5153一、数的认识数的大小比较数的意义,数的读、写法数的性质数的改写数的认识整数部分小数点小数部分…亿级万级个级数位…千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位.十分位百分位千分位万分位…计数单位…千亿百亿十亿亿千万百万十万万千百十一个十分之一百分之一千分之一万分之一…整数和小数数位顺序表数的读法和写法十进制计数法数的认识例:13500260320一百三十五亿零二十六万零三百二十一个多位数的百万位和千位上都是9,十万位和十位上都是5,其他数位上的数都是0,这个数写作(9509050)。从左边起第一个“9”表示(),从右边起第一个“5”表示()。数的改写整数、小数的改写:改写成用“万”、“亿”作单位的数(大小不变)取近似数(省略亿后面或改写用亿作单位的近似数或四舍五入到亿位,精确到……)(大小变了)数的认识320056=32.0056万320056≈32万2.658≈2.66小数分数百分数0.25=()小数点向右移动两位,添上%0.35%=()去掉%,小数点向左移动两位40100=40%=2516≈0.167=16.7%14=0.25=25%1.2=25%0.0035210151=1分数小数百分数的互化数的改写数的认识数的大小比较数的认识数的大小比较。如“3.14,315%,,,”按从大到小排列。513.3.14=3.14315%=3.15∏=3.1415……=3.14285……=3.1515……∏722722513.因数和倍数:1、非零自然数的两种分类偶数奇数自然数(不包括0)质数1合数公因数质数合数最大公因数约分(互质数)2、因数倍数公倍数2、3、5的倍数的特征最小公倍数通分偶数、奇数20以内的数既是质数又是偶数(),既是奇数又是合数的(),最小的合数是()。如果a÷b=8(a、b非0自然数),那么a与b的最大公因数是(),最小公倍数是()。16÷2=8如:=既可以表示约分,又可以表示两个分数相等,还可以表示一个比例。6432又如a÷b=10,可以说a是b的10倍,但a不一定是b的倍数。数的运算(1)意义、计算方法(2)混合运算、运算定律、简便运算(3)应用四则运算整数小数分数二、数的运算四则运算的意义和计算方法数的运算加法减法乘法除法整数把两个数合并成一个数的运算已知两个数的和与其中一个加数,求另一个加数的运算求几个相同加数的和的简便运算已知两个因数的积和其中一个因数,求另一个因数的运算小数与整数加法的意义相同与整数减法的意义相同小数乘整数与整数乘法的意义相同与整数除法的意义相同分数与整数加法的意义相同与整数减法的意义相同分数乘整数与整数乘法的意义相同与整数除法的意义相同计算法则相同点不同点整数加减法相同数位对齐(相同的计数单位的数才能相加)个位对齐小数加减法小数点对齐分数加减法分数的分母相同整数、小数、分数加减法计算法则的异同点7.52-3.2=7.20.14+3.2=0.461890÷18=15025.5÷o.15=170.42÷0.6=7×15=21432011×297≈297011×297≈330011×297≈30006249÷67≈90①整数四则混合运算②小数四则混合运算③分数四则混合运算④整数、小数、分数四则混合运算。四则混合运算:1375+625÷25×1880-20×3强调运算顺序,审题习惯培养,加强“说运算顺序,说先做什么”培养。其次在第一步下边画标记,把易错题放在一起对比。120÷20×3120-20×3整数、小数、分数四则混合运算。(1)直接约分。(2)化分数。分数、小数四则混合运算,分数和小数的互化,计算中经常用到的一些数据,最好能记住。记住了分母是2、4、5、8的最简真分数的小数值,用起来就很方便。有些计算中的难点如:商中有0的除法、除数和被除数都是小数的除法、分数小数四则混合运算等,可以有针对性重点复习,强化练习。运算定律、运算性质、简便算法数的运算运算定律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c数的运算运算定律、简便算法a-b-c=a-c-b可以变化顺序a-b-c=a-(b+c)可以加起来一起减a÷b÷c=a÷c÷b可以变化顺可以a÷b÷c=a÷(b×c)可以乘起来一起除运算性质(1)(40+4)×25=40×25×4×25=100×1000=100000315-25+7528×(35+65)×7+8387125×(8+20)48+52×238×(24+76)43+43×39建议每天可适当做几道题计算,尽量整、小数、分数、运算定律的使用等各种题型的混合运算。主要以两步计算为主不超过三步。不要过于复杂、适量。提高速度和准确率。式与方程用字母表示数用字母表示数的作用用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式用字母表示数写法上的注意点将数值代入式子求值方程和方程的解解方程简易方程列方程解决问题式与方程三、1.用字母表示数的作用。用字母表示数可以把数量关系简明地表达出来,同时也可以表示运算的结果。用字母表示数式与方程2.用字母表示常见的数量关系、运算定律和性质、几何图形的计算公式(1)常见的数量关系如:路程用S表示,速度用v表示,时间用t表示,三者之间的关系:S=vtv=S÷tt=S÷v(2)运算定律和性质如:乘法结合律:(ab)c=c(ab)乘法分配律:(a+b)c=ac+bc减法:a-(b+c)=a-b-c(3)用字母表示几何图形的计算公式式与方程用字母表示数“一个正方体棱长a分米,这个正方体表面积是()平方分米。列式(a²×6),应该写成6a²,强调数与字母相乘,数要写在字母前面。。a²和2a、a3和3a的意义要注意理解区别0.3²=0.3×0.3=0.090.4²=0.4×0.4=0.16学生有的没真正理解意义,往往这样计算:0.3²=0.3×2=0.60.4²=0.4×2=0.80.3²=0.3×0.3=0.90.4²=0.4×0.4=1.6•求代数式的值,要把计算结果算出来。如“一条路450千米,一辆汽车每小时行90千米,行b小时后,还剩()千米。列式450-90b当b=3时,还剩(450-90×3)这个结果要强调学生算出来。有的学生只代人,没计算结果又如:已知3+5=20,求7-9的值是()。xx注意列方程和解方程的要求和书写格式1.六年级植树120棵,比五年级的2倍多20棵,五年级植树多少棵?2.师傅和徒弟两人工作1天可以加工零件140个,已知徒弟的工作效率只相当于师傅的,师傅和徒弟每天各加工多少个零件?32常见的量计量单位的进率同一种量不同单位的改写常见的量四、常见的量长度千米、米、分米、厘米、毫米面积平方千米、公顷、平方米、平方分米、平方厘米体积(容积)立方米、立方分米(升)、立方厘米(毫升)质量吨千克克时间世纪、年、月、日、时、分、秒小红早晨从一张长2分米的床上起来,用5秒时间刷牙、洗脸,吃了150千克的面包,喝了100升的牛奶,背上10立方厘米的书包飞快向600千米的学校跑去。同一种量不同的单位的改写。关键是记住单位之间的进率。小数点的位置移动方法。注意位数不够要补05米6厘米=(5.6)米4.06吨=(4)吨(600)千克2千米50米=(2)千米=(50)米。还有学生对于进率不是整十、整百、整千的单位之间的改写容易出错。如:3000平方米=(3)公顷1.5时=(1)时(5)分2.3时=(2)时(30)分闰年判断方法,普通年份4的倍数,强调整百年份是400的倍数比性质意义求比值化简比应用比例性质意义正、反比例比例尺应用五、比和比例比和比例判断意义求比例尺意义比和比例意义项基本性质举例区别比两个数相除又叫做两个数的比。前项后项比的前项和后项同时乘或者除以相同的数(零除外),比值不变。2:5或2/5比由两个数组成,表示两个数的倍比关系。比例表示两个比相等的式子。内项外项在比例里,两个内项的积等于两个外项的积。2:3=6:9或2/3=6/9比例由两个相等的比组成,表示两个比相等的关系。比和比例比、分数与除法的联系和区别各部分名称基本性质区别比前项:比号后项比值比的前项和后项同时乘或除以相同的数(零除外),比值不变。比表示两个数之间的倍比关系。“:”是一种关系符号。÷除号除数商被除数和除数都乘或除以相同的数(零除外),商不变。除法是一种运算。“÷”是一种运算符号。分数分子分数线分母分数值分数的分子和分母都乘或除以相同的数(零除外)分数的大小不变。分数是一个数。除法被除数比和比例正比例与反比例相同点不同点用字母表示变化规律正比例有三种量。其中一种量是一定的,另外两种相关联的量,一种量变化.另一种量也随着变化。y/x=k(k一定)比值(商)一定。同变反比例xy=k(一定)积一定。异变比和比例男生与女生人数的比是5∶4①男生是女生的1.5倍,那么男生:女生=():()②用去,那么用去:剩下=():()③男生比女生多25%那么男生:女生=():(),女生比男生少()%54()∶20=0.75==18÷()=()%24)(正、反比例的判断:(1)看定量(2)找变量(3)判断(积一定,还是商一定)如(1)订阅《六年级数学丛书》的份数和总钱数。(2)同学们做操,每排站的人数和排数。这一节复习的对象主要是1-6年级各册找规律和数学广角的内容,要求在这里进一步巩固,发展学生找规律的能力,分步枚举组合的能力和列表推理的能力。教师可以先引导学生归纳在过去的1-6年级中我们分别接触过的数学思想方法,这些数学思想方法分别有排列、组合、集合等量代换,逻辑推理、统筹优化、数学编码、抽屉原理等。数学思考找出规律——化繁为简化难为易六、数学思考数学思考例5例6:排列组合——有序地思考数学思数学思考例6例7:逻辑推理——排除法列表法数学思考数学思考例7解决问题整理复习解决问题整、小数解决问题分数、百分数解决问题方程、比例解决问题1.学校六月份用水82吨,比五月份多用水6.2吨。学校五、六月份一共用水多少吨?2.有一批布,如果每套衣服用2.5米,够做40套,如果每套少用0.5米,可以做多少套?3.一个小组在一班工作时间内,前3小时共生产零件590个,后5小时平均每小时生产零件186个,这小组平均每小时生产零件多少个?4.甲、乙两地相距540千米,去时每小时行90千米,返回时每小时行60千米。这辆汽车往返甲乙两地的平均速度是每小时行多少千米?5.有快、慢两种列车同时从A、B两城出发,相向而行。3小时后在离中点12千米处相遇。已知快车每小时行驶75千米,A、B两城相距多少千米?整、小数解决问题分数、百分数解决问题加强对单位“1”意义的教学。抓住关键句去辨认单位“1”。谁与谁比,谁是谁的几分之几。两种类型:一个量的部分同整体的比,一个量同另一个量的比。找单位“1”的方法:可以像语文中的方法,“扩一扩”的方法,更完整、更清晰、更准确找单位”1”。如:如一桶油,用去了。让学生补充完整就是“用去的是一桶油的”;又如一件衣服,降价了,补充完整就是“现价比原价降低了。再如,超额完成计划,补充完整就是“实际比计划多414151516161新星小学同学为灾区捐款,六年级捐了420元,比五年级多捐了,五年级捐了多少元?420×(1-)6161数量和对应分率错误。(1)大齿轮每分钟转80周,比小齿轮每分钟