高三数学答案第1页共11页南京市、盐城市2020届高三年级第二次模拟考试数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.{1,3}2.53.-144.3255.126.07.π28.65π9.510.2211.812.±25513.214.(1,12+ln2)二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.(本小题满分14分)证明:(1)因为点D,E分别为AB,BC的中点,所以DE∥AC.············································································2分因为AC平面PDE,DE平面PDE,所以AC∥平面PDE.···································································4分(2)因为点D,E分别为AB,BC的中点,所以DE=12AC.又因为AC=2,所以DE=1,因为PD=2,PE=3,所以PD2=PE2+DE2,因此在△PDE中,PE⊥DE.··························································8分又平面PDE⊥平面ABC,且平面PDE∩平面ABC=DE,PE平面PDE,所以PE⊥平面ABC,································································12分又因为PE平面PBC,所以平面PBC⊥平面ABC.·························································14分高三数学答案第2页共11页16.(本小题满分14分)解:(1)因为a=bcosC+csinB,由asinA=bsinB=csinC,得sinA=sinBcosC+sinCsinB.·····································2分又因为sinA=sin[π-(B+C)]=sin(B+C)=sinBcosC+cosBsinC,所以sinBcosC+cosBsinC=sinBcosC+sinCsinB,即cosBsinC=sinCsinB.··········································································4分因为0<C<π,所以sinC≠0,所以sinB=cosB.又0<B<π,所以sinB≠0,从而cosB≠0,所以tanB=1,所以B=π4.·························································································6分(2)因为AD是∠BAC的平分线,设∠BAD=θ,所以A=2θ,因为cosA=-725,所以cos2θ=cosA=-725,即2cos2θ-1=-725,所以cos2θ=925,因为0<A<π,所以0<θ<π2,所以cosθ=35,所以sinθ=1-cos2θ=45.在△ABD中,sin∠ADB=sin(B+θ)=sin(π4+θ)=sinπ4cosθ+cosπ4sinθ=22×(35+45)=7210.·············································8分由ADsinB=ABsin∠ADB,所以AB=AD·sin∠ADBsinB=177×7210×2=175.················10分在△ABC中,sinA=1-cos2A=2425,所以sinC=sin(A+B)=sinAcosB+cosAsinB=22×(2425-725)=17250.··············12分由bsinB=csinC,所以b=c·sinBsinC=175×2217250=5.··············································14分17.(本小题满分14分)解:(1)连接CD,因为BD与圆C相切,切点为D,所以△BCD为直角三角形.因为∠CBD=θ,且圆形小岛的半径为1千米,所以DB=1tanθ,BC=1sinθ.因为岸边上的点A与小岛圆心C相距3千米,所以AB=AC-BC=3-1sinθ.·····2分又因为BE与圆C相切,所以BE=DB=1tanθ,优弧︵DE所对圆心角为2π-(π-2θ)=π+2θ,所以优弧︵DE长l为π+2θ,·····························································4分高三数学答案第3页共11页所以f(θ)=AB+BD+BE+l=3-1sinθ+1tanθ+1tanθ+π+2θ=3+π+2θ+2cosθ-1sinθ.······························································6分因为0<AB<2,所以0<3-1sinθ<2,解得13<sinθ<1,所以sinθ的取值范围为(13,1).································································8分(2)由f(θ)=3+π+2θ+2cosθ-1sinθ,得f'(θ)=-2+cosθsin2θ+2=cosθ(1-2cosθ)sin2θ.·10分令f'(θ)=0,解得cosθ=12,因为θ为锐角,所以θ=π3.····························12分设sinθ0=13,θ0为锐角,则0<θ0<π3.当θ∈(θ0,π3)时,f'(θ)<0,则f(θ)在(θ0,π3)单调递减;当θ∈(π3,π2)时,f'(θ)>0,则f(θ)在(π3,π2)单调递增,所以f(θ)在θ=π3时取得最小值.答:当θ=π3时,栈道总长度最短.··························································14分18.(本小题满分16分)解:(1)记椭圆C的焦距为2c.因为椭圆C的离心率为12,所以ca=12.因为椭圆C过点(0,3),所以b=3.因为a2-c2=b2,解得c=1,a=2,故椭圆C的方程为x24+y23=1.··································································2分(2)①因为点B为椭圆C的上顶点,所心B点坐标为(0,3).因为O为△BMN的垂心,所以BO⊥MN,即MN⊥y轴.由椭圆的对称性可知M,N两点关于y轴对称.··········································4分不妨设M(x0,y0),则N(-x0,y0),其中-3<y0<3.又因为MO⊥BN,所以→MO·→BN=0,即(-x0,-y0)·(-x0,y0-3)=0,得x20-y20+3y0=0.·············································································6分又点M(x0,y0)在椭圆上,则x024+y023=1.高三数学答案第4页共11页由x20-y20+3y0=0,x024+y023=1,解得y0=-473或y0=3(舍去),此时|x0|=2733.故MN=2|x0|=4733,即线段MN的长为4733.···········································8分②方法1设B(m,n),记线段MN中点为D.因为O为△BMN的重心,所以→BO=2→OD,则点D的坐标为(-m2,-n2).······10分若n=0,则|m|=2,此时直线MN与x轴垂直,故原点O到直线MN的距离为|m2|,即为1.若n≠0,此时直线MN的斜率存在.设M(x1,y1),N(x2,y2),则x1+x2=-m,y1+y2=-n.又x124+y123=1,x224+y223=1,两式相减得(x1+x2)(x1-x2)4+(y1+y2)(y1-y2)3=0,可得kMN=y1-y2x1-x2=-3m4n.···································································12分故直线MN的方程为y=-3m4n(x+m2)-n2,即6mx+8ny+3m2+4n2=0,则点O到直线MN的距离为d=|3m2+4n2|36m2+64n2.将m24+n23=1,代入得d=3n2+9.························································14分因为0<n2≤3,所以dmin=32.又32<1,故原点O到直线MN距离的最小值为32.································16分方法2设M(x1,y1),N(x2,y2),B(x3,y3).因为O为△BMN的重心,所以x1+x2+x3=0,y1+y2+y3=0,则x3=-(x1+x2),y3=-(y1+y2).··························································10分因为x234+y233=1,所以(x1+x2)24+(y1+y2)23=1.将x124+y123=1,x224+y223=1,代入得x1x24+y1y23=-12.··································12分若直线MN的斜率不存在,则线段MN的中点在x轴上,从而B点位于长轴的顶点处,由于OB=2,所以此时原点O到直线MN的距离为1.若直线MN的斜率存在,设为k,则其方程为y=kx+n.高三数学答案第5页共11页由y=kx+n,x24+y23=1,消去y得,(3+4k2)x2+8knx+4n2-12=0.(*)则△=(8kn)2-4(3+4k2)(4n2-12)>0,即3+4k2>n2,由根与系数关系可得x1+x2=-8kn3+4k2,x1x2=4n2-123+4k2,则y1y2=(kx1+n)(kx2+n)=k2x1x2+kn(x1+x2)+n2=3n2-12k23+4k2,代入x1x24+y1y23=-12,得14×4n2-123+4k2+13×3n2-12k23+4k2=-12,即n2=k2+34.······14分又3+4k2>n2,于是3+4k2>k2+34,即3k2+94>0恒成立,因此k∈R.原点(0,0)到直线MN的距离为d=|n|k2+1=k2+34k2+1=1-14(k2+1).因为k2≥0,所以当k=0时,dmin=32,又32<1,故原点O到直线MN距离的最小值为32.································16分19.(本小题满分16分)解:(1)因为h(x)=f(x)x-g(x)=x2-x-(a-16)-alnx,所以h'(x)=2x-1-ax=2x2-x-ax,令h'(x)=0,得2x2-x-a=0.因为函数h'(x)在[52,4]上存在零点,即y=2x2