能源金融第十一章核电技术经济性分析•核电发展状况第一节•核电技术经济性分析第二节•中国核电市场及技术路径分析第三节第一节核电发展状况一、核能开发与利用(一)基本概况1、世界核电的发展历程世界上第一座实验性核电站是建于1954年的前苏联奥布宁斯克实验性石墨沸水堆核电厂,人类从此进入了和平利用核能的年代。半个多世纪以来,核电经历了20世纪50、60年代的起步阶段、20世纪60、70年代的快速发展阶段、20世纪80年代一直到本世纪初的缓慢发展阶段以及本世纪以来的复苏阶段。(1)核电技术验证阶段(2)核电技术标准化、系列化发展阶段(3)核电技术安全性、经济性发展阶段第一节核电发展状况一、核能开发与利用(一)基本概况1、世界核电的发展历程(1)核电技术验证阶段1942年12月,在美国芝加哥大学建成的世界第一座反应堆证明了实现可控的核裂变链式反应的科学可行性。50年代初开始,利用已有的军用核技术建造以发电为目的的反应堆,由建造实验堆阶段转入验证示范阶段。(2)核电技术标准化、系列化发展阶段60年代到70年代,核电的安全性和经济性得到验证,相对于常规发电系统的优越性鲜明地显现出来。在核电大发展时期,同样存在激烈竞争。一些因其固有特点的限制,难于同其他机型竞争而被淘汰,有发展空间的机型,则为提高安全性、改善经济性而不断改进,如美国通用电气公司的沸水堆BWR1、BWR2等形成了系列化的发展。美国西屋公司的212、312、412型和314、414型等。第一节核电发展状况一、核能开发与利用(一)基本概况1、世界核电的发展历程(3)核电技术安全性、经济性发展阶段20世纪70和80年代中先后发生了三哩岛和切尔诺贝利两大核事故,特别是切尔诺贝利灾难性核事故,带来了强烈的反响,使核能的公众接受问题成了世界核电发展的重大障碍。为解决核能的公众接受问题,90年代,世界核电界集中力量进行了安全标准、审批程序、机型改进等方面的工作,编制用户要求文件和开发更安全、更经济的先进轻水堆核电技术。2、核电技术的发展路径(1)第二代核电技术在第一代核电(GenI)即早期原型堆的基础上,第二代核电(GenII),即实现商业化、标准化、系列化、批量化,具有较高经济性的商用核反应堆。自60年代末至70年代广泛建造的大批单机容量在600-1400MW的核电站,以美国西屋公司Model212、Model312,Model314,Model412、Model414、System80等为代表,也就是目前世界正在运行的440余座核电站(2007年12月底统计数)的主力机组都属于GenII,主要堆型是压水堆、沸水堆、重水堆和石墨气冷堆等。第一节核电发展状况一、核能开发与利用(一)基本概况2、核电技术的发展路径(2)第三代核电技术从20世纪80年代开始,国际核能界就对第三代核电(GenIII)技术开展了广泛的研究。从20世纪90年代开始,国际核能界在积极推动对第二代核电的延寿挖潜以应对二代核电机组老化问题的同时,关注的重点逐渐转向第三代的工程建设和三代加(GenIII+)的研发,并取得了大量有价值的工程经验和研究成果。GenIII具有的技术经济特性包括:标准化设计,以利于许可审批、降低造价和缩短建造周期;简单化设计,但更加耐用,使其更易于运行并更不易受到运行干扰的影响;更高的可利用率和更长的运行寿期——通常为60年;大幅堆芯熔融事故概率降低;环境影响将到最小;更高的燃耗深度,以减少燃料的用量和由此产生的废物数量;可燃的吸收体(“毒物”),以延长燃料寿命。第一节核电发展状况一、核能开发与利用(一)基本概况2、核电技术的发展路径(2)第三代核电技术GenIII能够满足美国先进轻水堆用户要求文件(URD)或欧洲用户要求文件(EUR)的基本要求,在加大堆芯安全裕量、增强严重事故预防和缓解能力、提高电厂数字化与信息化水平等方面都比GenII有明显进步。而GenIII+的堆型则大都采用了独特的技术,简化了系统,进一步提高系统的安全性和经济性。(3)第四代核电技术第四代核电(GenIV)技术有别于原有的对核电技术或先进反应堆的概念,而是以核能系统概念出现的。GenIV最先由美国能源部的核能、科学与技术办公室提出,始见于1999年6月美国核学会夏季年会,同年11月的该学会冬季年会上,发展GenIV核能系统的设想得到进一步明确。第一节核电发展状况一、核能开发与利用(一)基本概况2、核电技术的发展路径(3)第四代核电技术由美国、法国、日本、英国等核电发达国家组建了“第四代核能系统国际论坛(GIF)”,其目标是在2030年左右,向市场推出能够解决核能经济性、安全性、废物处理和防止核扩散问题的GenIV核能系统。GIF认为在可持续发展和防止温室效应方面,核能能够发挥很大的作用,而相关的新一代核能系统的国际合作围绕着以下几方面进行:持久性:有利于节省自然资源(铀)以及废物量最少化;经济竞争性:目标是降低投资费用与运行费用;安全和可靠性:目标是(如果可能)排除疏散核电厂外部人员的必要性;加强防扩散和实体保护能力。第一节核电发展状况一、核能开发与利用(一)基本概况2、核电技术的发展路径(4)行波堆(TravelingWaveReactor,TWR)行波堆(TWR)不同于现有商业化的堆,通过对抑制堆芯燃料的分布和运行,核燃料可以从一端负级启动点燃,裂变产生的多余中子将周围不能裂变的U-238转化成Np-239,当达到一定浓度之后,形成裂变反应,同时开始焚烧在原位生成的燃料,形成行波。行波堆技术能够将贫瘠的核能原料,在反应堆内直接转化为可使用的燃料并充分焚烧利用。目前,美国泰拉能源公司(TerraPower)开发的行波堆技术采用的是钠冷快堆设计,金属铀合金燃料,包壳与堆芯结构材料HT-9,蒸汽驱动朗肯循环发电,40~100年电厂寿期所废弃物就保存在堆内。第一节核电发展状况一、核能开发与利用(二)技术特性1、堆型反应核反应堆是一类提供动力的“动力堆”。按其使用的核燃料、冷却剂、慢化剂类型以及中子能量的大小,可分为4种类型。(1)轻水堆(LWR)采用普通水(轻水)为冷却剂兼慢化剂。轻水堆又分为沸水堆(BWR)和压水堆(PWR)两个类型。(2)重水堆(HWR)采用“重水”(H3O)作为冷却剂兼作慢化剂。(3)气冷堆(GCR)(4)快中子增殖堆2、发展趋势在核电市场竞争中,一个机型能保持持续稳定的发展而不被市场竞争所淘汰,关键是能够确保安全、在经济上有竞争力。第一节核电发展状况一、核能开发与利用(二)技术特性2、发展趋势提高安全性、改善经济性,在满足确定的安全要求的条件下,争取最好的经济性。这一思路不仅对核电技术的发展产生了深刻的影响,同时也对核电经济尤其是新系统的经济性产生深刻的影响。具体表现在以下几个方面:(1)单机容量继续向大型化方向发展(2)系统采用非能动安全系统、简化系统、减少设备来提高安全性(3)系统仪表控制系统(I&C)的数字化和施工建设的模块化(4)发展快中子堆技术,建立闭式核燃料循环,使核电能可持续发展。第一节核电发展状况二、全球核电市场1、市场概况(1)核电装机容量根据IEA的估计,截至2012年底,全球核电总装机容量约为374GWe,运行的核反应堆共计433座,堆型有压水堆(PWR)、沸水堆(BWR)、重水堆(PHWR)、气冷堆(Magnox&AGR)、石墨水冷堆(RBMK)和快堆(FR)。其中压水堆268座,总装机容量约为249GW;沸水堆94座,总装机容量约为85GW;重水堆40座,总装机容量约为22GW;气冷堆23座,约为12GW;快堆4座,总装机容量约为1GW。二、全球核电市场1、市场概况(1)核电装机容量第一节核电发展状况图11-12011年全球主要核电国的装机容量比例二、全球核电市场1、市场概况(2)核能发电量根据国际原子能机构(IAEA)提供的数据,2011年全球的核核电站总发电总量为2518TWh,约占全球总发电量的13.5%,比2010年的2630TWh降低了约4.3%。2011年全球核电站的加权平均容量因子为78.7%,低于2010年的81.0%。2011年,核发电量在全国总发电量中的份额超过20%的国家共有13个,其中法国的核电份额最高,达到77.7%,其次为斯洛伐克和比利时,均为54%。2012年,全球的核电站总发电量为2346TWh,比2011年减少了7%,遭受了有史以来最大规模的下滑。造成全球核电衰退的主要原因是日本福岛第一核电站于2011年3月发生的严重核事故。第一节核电发展状况二、全球核电市场2、发展趋势目前,共有13个国家正在建设63台核电机组,总装机容量为62GWe;27个国家计划建设160台核电机组,总装机容量约为180GWe;37个国家拟建设329台核电机组,总装机容量为376GWe。第一节核电发展状况图11-21955年到2010年每年全球核电厂开建数量二、全球核电市场2、发展趋势根据IEA的最新估计,全球核电总装机容量到2035年将达到约580GWe,发电量将从2010年的2630TWh增加至2035年的4370TWh,增长约60%,核发电量将占世界总发电量的12%。但是,这一估计考虑到全球核电发展受到福岛核事故的影响,比2011年IEA的估计要悲观许多。第一节核电发展状况图11-32011年全球核电装机容量分布及2035年预测二、全球核电市场2、发展趋势国际原子能机构(IAEA)在其于2012年9月公布的《2050年的能源、电力与核电估计》的年度报告中表示,预计全球核电装机容量将从2011年的370GWe增加至2030年的456~740GWe。未来全球核电装机容量仍将持续增长,主要由于中国、韩国、印度和俄罗斯大规模的核电建设。第一节核电发展状况图11-42050年蓝图情景中电力部门CO2减排与基线情景对比情况二、全球核电市场2、发展趋势根据IEA的估计,如果要实现全球气候谈判中确立的温室气体减排目标,全球核电的装机容量在2020年至少要达到475~500GWe,而这个范围的较高值主要是考虑到了中国最近加速发展核计划的情况。要扩张至500GWe,除了已经建成的核电机组,还需要到2016年左右开始建设另外90吉瓦(允许关闭一些较旧的机组),或者每年建设12~13GWe。2009年,总容量超过12GWe的11个大型核项目开始建设。从中短期来看,全球核电发展的最大阻碍主要来自社会舆论中对核安全的担忧,以及由此带来的“去核化”思潮,而不是技术和资金方面的问题。从长期来看,一旦第三代核电技术发展成熟,核电的安全性和经济性有了保障,未来全球温室气体减排仍需大力依托核电发展。第一节核电发展状况二、全球核电市场3、核电工业(1)全球核电产业及其竞争情况目前,全球核电产业链从上至下主要包括核电技术提供商、核电设备制造商、核电设备零部件制造商,共三个主要的竞争环节。核电设备零部件制造中设备锻件制造又是最重要的部分。在核电技术供应环节,目前全球出现了三个最主要的核电技术供应联合体,包括东芝‐西屋(Toshiba‐Westhouse)、阿海珐‐三菱(Areva‐Mistubishi)和通用‐日立(GE‐Hitachi)。尽管核电技术供应商众多,技术水平相差无几,但由于经济性、安全性、需求地理分布、政治等复杂因素的影响,目前Toshiba‐Westhouse的AP1000、KOPEC的APR1400以及中广核的CPR1000已经表现出了一定的竞争优势。在核电设备制造领域,全球有十几家主要的竞争企业,包括韩国斗山重工(DHIC)、日本东芝(Toshiba)、日本三菱(Mistubishi)、日本日立(Hitachi)、法国阿海珐(Areva)、日本石川岛播磨重工(IHI)、日本三菱重工(MHI)、恩萨(ENSA)、安萨尔多(Ansaldo)、东方电气、上海电气、哈动力等。第一节核电发展状况二、全球核电市场3、核电工业(1)全球核电产业及其竞争情况在核电设备零部件制造领域,核电锻件制造是整个核电设备制造领域中市场规模最大的部分,同时也是整个核电产业链中最重要