高中数学选修2-3第二章随机变量及其分布教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章随机变量及其分布2.1.1离散型随机变量定义1:随着试验结果变化而变化的变量称为随机变量(randomvariable).随机变量常用字母X,Y,,,…表示.思考:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.定义2:所有取值可以一一列出的随机变量,称为离散型随机变量(discreterandomvariable).连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量奎屯王新敞新疆2.1.2离散型随机变量的分布列离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出奎屯王新敞新疆1.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为()iiPxp,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的概率分布,简称ξ的分布列奎屯王新敞新疆2.分布列的两个性质:任何随机事件发生的概率都满足:1)(0AP,并且不可能事件的概率为0,必然事件的概率为3.两点分布列:例1.在掷一枚图钉的随机试验中,令1,针尖向上;X=0,针尖向下.如果针尖向上的概率为p,试写出随机变量X的分布列.解:根据分布列的性质,针尖向下的概率是(1p).于是,随机变量X的分布列是ξ01P1pp像上面这样的分布列称为两点分布列.两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X的分布列为两点分布列,就称X服从两点分布(two一pointdistribution),而称p=P(X=1)为成功概率.两点分布又称0一1分布.由于只有两个可能结果的随机试验叫伯努利(Bernoulli)试验,所以还称这种分布为伯努利分布.qP0,pP1,10p,1qp.4.超几何分布列:例2.在含有5件次品的100件产品中,任取3件,试求:(1)取到的次品数X的分布列;(2)至少取到1件次品的概率.解:(1)由于从100件产品中任取3件的结果数为310C,从100件产品中任取3件,其中恰有k件次品的结果数为3595kkCC,那么从100件产品中任取3件,其中恰有k件次品的概率为35953100(),0,1,2,3kkCCPXkkC。所以随机变量X的分布列是X0123P035953100CCC125953100CCC215953100CCC305953100CCC(2)根据随机变量X的分布列,可得至少取到1件次品的概率P(X≥1)=P(X=1)+P(X=2)+P(X=3)≈0.13806+0.00588+0.00006=0.14400.一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件{X=k}发生的概率为(),0,1,2,,knkMNMnNCCPXkkmC,其中min{,}mMn,且,,,,nNMNnMNN.称分布列X01…mP0nMNMnNCCC11nMNMnNCCC…mnmMNMnNCCC为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布(hypergeometriCdistribution).例3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.nNkkNkmCCCkP/例4.已知一批产品共件,其中件是次品,从中任取件,试求这件产品中所含次品件数的分布律。解显然,取得的次品数只能是不大于与最小者的非负整数,即的可能取值为:0,1,…,min{,}Mn,由古典概型知(),0,1,2,,knkMNMnNCCPXkkmC此时称服从参数为(,,)NMn的超几何分布。注超几何分布的上述模型中,“任取件”应理解为“不放回地一次取一件,连续取件”.如果是有放回地抽取,就变成了重贝努利试验,这时概率分布就是二项分布.所以两个分布的区别就在于是不放回地抽样,还是有放回地抽样.若产品总数很大时,那么不放回抽样可以近似地看成有放回抽样.因此,当时,超几何分布的极限分布就是二项分布,即有如下定理.定理如果当时,MpN,那么当时(不变),则(1)knkkknkMNMNnNCCCppC。由于普阿松分布又是二项分布的极限分布,于是有:超几何分布二项分布普阿松分布.例5.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.解:设黄球的个数为n,由题意知绿球个数为2n,红球个数为4n,盒中的总数为7n.∴7474)1(nnP,717)0(nnP,7272)1(nnP.所以从该盒中随机取出一球所得分数ξ的分布列为ξ10-1P747172说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.小结:⑴根据随机变量的概率分步(分步列),可以求随机事件的概率;⑵两点分布是一种常见的离散型随机变量的分布,它是概率论中最重要的几种分布之一奎屯王新敞新疆(3)离散型随机变量的超几何分布奎屯王新敞新疆2.2.1条件概率一、复习引入:条件概率1.定义设A和B为两个事件,P(A)0,那么,在“A已发生”的条件下,B发生的条件概率(conditionalprobability).(|)PBA读作A发生的条件下B发生的概率.(|)PBA定义为()(|)()PABPBAPA.由这个定义可知,对任意两个事件A、B,若()0PB,则有()(|)()PABPBAPA.并称上式微概率的乘法公式.2.P(·|B)的性质:(1)非负性:对任意的Af.0(|)1PBA;(2)规范性:P(|B)=1;(3)可列可加性:如果是两个互斥事件,则(|)(|)(|)PBCAPBAPCA.更一般地,对任意的一列两两部相容的事件iA(I=1,2…),有P1|iiBA=)|(1BAPii.例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(l)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为n()=35A=20.根据分步乘法计数原理,n(A)=1134AA=12.于是()123()()205nAPAn.(2)因为n(AB)=23A=6,所以()63()()2010nABPABn.(3)解法1由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概3()110(|)3()25PABPBAPA.2.2.2事件的相互独立性1奎屯王新敞新疆互斥事件:不可能同时发生的两个事件.()()()PABPAPB一般地:如果事件12,,,nAAA中的任何两个都是互斥的,那么就说事件12,,,nAAA彼此互斥奎屯王新敞新疆2.对立事件:必然有一个发生的互斥事件.()1()1()PAAPAPA3.互斥事件的概率的求法:如果事件12,,,nAAA彼此互斥,那么12()nPAAA=12()()()nPAPAPA奎屯王新敞新疆4.对于事件A与B及它们的和事件与积事件有下面的关系:)()()()(BAPBPAPBAP奎屯王新敞新疆三、讲解范例:例1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解:(1)记“第一次抽奖抽到某一指定号码”为事件A,“第二次抽奖抽到某一指定号码”为事件B,则“两次抽奖都抽到某一指定号码”就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P(AB)=P(A)P(B)=0.05×0.05=0.0025.(2)“两次抽奖恰有一次抽到某一指定号码”可以用(AB)U(AB)表示.由于事件AB与AB互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P(AB)十P(AB)=P(A)P(B)+P(A)P(B)=0.05×(1-0.05)+(1-0.05)×0.05=0.095.(3)“两次抽奖至少有一次抽到某一指定号码”可以用(AB)U(AB)U(AB)表示.由于事件AB,AB和AB两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P(AB)+P(AB)+P(AB)=0.0025+0.095=0.0975.JCJBJA例3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作奎屯王新敞新疆假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率奎屯王新敞新疆例4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率奎屯王新敞新疆2.2.3独立重复实验与二项分布二、讲解新课:1奎屯王新敞新疆独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验奎屯王新敞新疆2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率knkknnPPCkP)1()(.它是(1)nPP展开式的第1k项奎屯王新敞新疆3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是knkknnqpCkP)(,(k=0,1,2,…,n,pq1).于是得到随机变量ξ的概率分布如下:ξ01…k…nPnnqpC00111nnqpC…knkknqpC…0qpCnnn由于knkknqpC恰好是二项展开式011100)(qpCqpCqpCqpCpqnnnknkknnnnnn中的各项的值,所以称这样的随机变量ξ服从二项分布(binomialdistribution),记作ξ~B(n,p),其中n,p为参数,并记knkknqpC=b(k;n,p).三、讲解范例:例1.某射手每次射击击中目标的概率是0.8.求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.(结果保留两个有效数字.)解:设X为击中目标的次数,则X~B(10,0.8).(1)在10次射击中,恰有8次击中目标的概率为P(X=8)=88108100.8(10.8)0.30C.(2)在10次射击中,至少有8次击中目标的概率为P(X≥8)=P(X=8)+P(X=9)+P(X=

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功