2010年普通高等学校招生全国统一考试文科数学(必修+选修)解析版本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。第I卷1至2页。第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。第I卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。3.第I卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。参考公式:如果事件A、B互斥,那么球的表面积公式()()()PABPAPB24SR如果事件A、B相互独立,那么其中R表示球的半径()()()PABPAPB球的体积公式如果事件A在一次试验中发生的概率是p,那么334VRn次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,)kknknnPkCppkn…一、选择题(1)cos300(A)32(B)-12(C)12(D)321.C【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识【解析】1cos300cos36060cos602(2)设全集1,2,3,4,5U,集合1,4M,1,3,5N,则UNMðA.1,3B.1,5C.3,5D.4,52.C【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】2,3,5UMð,1,3,5N,则UNMð1,3,52,3,5=3,5(3)若变量,xy满足约束条件1,0,20,yxyxy则2zxy的最大值为(A)4(B)3(C)2(D)13.B【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),11222zxyyxz,由图可知,当直线l经过点A(1,-1)时,z最大,且最大值为max12(1)3z.(4)已知各项均为正数的等比数列{na},123aaa=5,789aaa=10,则456aaa=(A)52(B)7(C)6(D)424.A【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5aaaaaaa,37897988()aaaaaaa10,所以132850aa,所以13336456465528()()(50)52aaaaaaaaa(5)43(1)(1)xx的展开式2x的系数是(A)-6(B)-3(C)0(D)35.A.【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】134323422(1)(1)1464133xxxxxxxxx0xy1Oyxy20xyxA0:20lxyL022A2x的系数是-12+6=-6(6)直三棱柱111ABCABC中,若90BAC,1ABACAA,则异面直线1BA与1AC所成的角等于(A)30°(B)45°(C)60°(D)90°6.C【命题意图】本小题主要考查直三棱柱111ABCABC的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA到D,使得ADAC,则11ADAC为平行四边形,1DAB就是异面直线1BA与1AC所成的角,又三角形1ADB为等边三角形,0160DAB(7)已知函数()|lg|fxx.若ab且,()()fafb,则ab的取值范围是(A)(1,)(B)[1,)(C)(2,)(D)[2,)7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,而利用均值不等式求得a+b=12aa,从而错选D,这也是命题者的用苦良心之处.【解析1】因为f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1ba,所以a+b=1aa又0ab,所以0a1b,令2()faaa1aa由“对勾”函数的性质知函数()fa在a(0,1)上为减函数,所以f(a)f(1)=1+1=2,即a+b的取值范围是(2,+∞).【解析2】由0ab,且f(a)=f(b)得:0111abab,利用线性规划得:0111xyxy,化为求zxy的取值范围问题,zxyyxz,2111yyxx过点1,1时z最小为2,∴(C)(2,)(8)已知1F、2F为双曲线C:221xy的左、右焦点,点P在C上,∠1FP2F=060,则12||||PFPFABCDA1B1C1D1O(A)2(B)4(C)6(D)88.B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析1】.由余弦定理得cos∠1FP2F=222121212||||||2||||PFPFFFPFPF22221212121201212222221cos60222PFPFPFPFPFPFFFPFPFPFPF12||||PFPF4【解析2】由焦点三角形面积公式得:120220121260113cot1cot3sin6022222FPFSbPFPFPFPF12||||PFPF4(9)正方体ABCD-1111ABCD中,1BB与平面1ACD所成角的余弦值为(A)23(B)33(C)23(D)639.D【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面AC1D的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB1//DD1,所以B1B与平面AC1D所成角和DD1与平面AC1D所成角相等,设DO⊥平面AC1D,由等体积法得11DACDDACDVV,即111133ACDACDSDOSDD.设DD1=a,则12211133sin60(2)2222ACDSACADaa,21122ACDSADCDa.所以1312333ACDACDSDDaDOaSa,记DD1与平面AC1D所成角为,则13sin3DODD,所以6cos3.【解析2】设上下底面的中心分别为1,OO;1OO与平面AC1D所成角就是B1B与平面AC1D所成角,111136cos1/32OOOODOD(10)设123log2,ln2,5abc则(A)abc(B)bca(C)cab(D)cba10.C【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】a=3log2=21log3,b=In2=21loge,而22log3log1e,所以ab,c=125=15,而2252log4log3,所以ca,综上cab.【解析2】a=3log2=321log,b=ln2=21loge,3221loglog2e,32211112logloge;c=121115254,∴cab(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PAPB的最小值为(A)42(B)32(C)422(D)32211.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x(0)x,∠APO=,则∠APB=2,PO=21x,21sin1x,||||cos2PAPBPAPB=22(12sin)x=222(1)1xxx=4221xxx,令PAPBy,则4221xxyx,即42(1)0xyxy,由2x是实数,所以2[(1)]41()0yy,2610yy,解得322y或322y.故min()322PAPB.此时21x.PABO【解析2】设,0APB,2cos1/tancos2PAPBPAPB2222221sin12sincos22212sin2sinsin22换元:2sin,012xx,112123223xxPAPBxxx【解析3】建系:园的方程为221xy,设11110(,),(,),(,0)AxyBxyPx,2211101110110,,001AOPAxyxxyxxxyxx22222222110011011022123223PAPBxxxxyxxxxx(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)233(B)433(C)23(D)83312.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有ABCD11222323Vhh四面体,当直径通过AB与CD的中点时,22max22123h,故max433V.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。请认真核准条形码上的准考证号、姓名和科目。22210110111001,,2PAPBxxyxxyxxxxy2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.........。3.第Ⅱ卷共10小题,共90分。二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........)(13)不等式22032xxx的解集是.13.21,2xxx或【命题意图】本小题主要考查不等式及其解法【解析】:22032xxx20221021xxxxxx,数轴标根得:21,2xxx或(14)已知为第二象限的角,3sin5a,则tan2.14.247【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.【解析】因为为第二象限的角,又3sin5,所以4cos5,sin3tancos4,所22tan24tan(2)1tan7(15)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)15.A【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析1】:可分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有1234CC种不同的选法;(2)A类选修课选2门,B类选修课选1门,有2134CC种不同的选法.所以不同的选法共有1234CC+2134181230CC