第三章-4

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第三章连续信号的正交分解1(四)尺度变换性质若)()(jFtf则)(1)(ajFaatf含义:在时域内,信号沿时间轴压缩至原来的,对应于频域中,它的频谱函数展宽倍。即信号的脉宽与频宽成反比。)(tfa1a第三章连续信号的正交分解2证明:(1)0a)(11)()()]([ajFatdaetfdteatfatfFatjatttj令令(2)0ataatttt)(1)1()(1)()]([)(ajFatdaetftdaetfatfFatjatj=-令1a则)()(jFtf)(tf1-τ/20τ/2t)(jFω)2(tf-τ/4τ/4tτ/2ω第三章连续信号的正交分解3(五)奇偶性质如果是t的实函数,且设)(tf)()()()()()(jXRejFjFtfj则有(1))()(,)()()()(),()(jFjFXXRR证明:)()(),()(XXRR)()(,)()(jFjF)()()()()()(****jFdtetfdtetfdtetfdtetfjFtjtjtjtj)()()()()(*jXRejFjFj)()()(jXRjF=第三章连续信号的正交分解4当f(t)是实偶函数时,其频谱亦为实偶函数!)()(,)(),()()()(,)(),()(jXjFRtftfRjFXtftf003则如则如)()()()(*jFjFtf)()()()()()(jFdtetftdetfttdtetftfFtjtjtj(2)若f(t)=f(-t),则F(jω)=F(-jω)=F*(jω)若f(t)=-f(-t),则F(jω)=-F(-jω)=-F*(jω)当f(t)为实奇函数时,其频谱是虚奇函数!第三章连续信号的正交分解5(六)对称性质(互易性质))()(jFtf若)(2)(fjtF则)(2)()(fjtFtf是偶函数,则若含义:信号的波形与信号的频谱的图形有着互相置换的关系。dejFtftj)()(21证明:dpejpFptjp)(21dpejpFfjp)()(21ω=tdtejtFpttj)(21dtejtFftj)(2第三章连续信号的正交分解6)()(ttf0tF(jω)10ω21)(21)(jtFtfa0t21)()(jFa0ω又如Gtf)(-0t22)2()(SajF1τ0ω24)()(21)(tSajtFtfmma=m0tmm2=)(jFa1-0ωmm注意:这种对称关系只适用于偶函数。第三章连续信号的正交分解7(七)时域微分特性若)()(jFtf则)()()(jFjdttdftf)()()(jFjdttfdnnn含义:信号对时间取导数,相当于在频域中用因子去乘它的频谱函数。)(j例8求非周期镜像脉冲的频谱函数)(tf)(tf1-1解:)()()()(jFjjFtftf第三章连续信号的正交分解8ttf)(-τ0τtτ00)()()(dtetdtetjFtjtj22)]2([Sa)2(4)]2([)()(222SinjSajjFjjF(八)时域积分性质若)()(jFtf则)()0()(1)(FjFjdft含义:信号对时间积分,相当于在频域中用因子去除它的频谱函数。)(j第三章连续信号的正交分解9例9求三角形脉冲的频谱函数)(tf)(jF解:1)(t)()0()(1)()()(111FjFjjFdftft)(tf-τ0τt1)()(1tftf-τ0τt-1/τ)()(2tftf-τ0τt(2/τ))()0()(1)()()(22121FjFjjFdftft)2(4]1)([22)(1)(22SinCoseejFjj2212)]2([)]2(4[1)(00SajSinjjFF)=(221)]2([)(1)(0)0(SajFjjFF运用积分性质从导函数的频谱求原函数的频谱时,原函数若不含直流分量,则其频谱就不含冲激函数,否则,其频谱等于导函数的频谱除以因子后再加上直流分量的频谱.)(j第三章连续信号的正交分解10312()()()()dgtdgtdgtftdtdtdt()()2ftSa例102()0gtdt因为,所以2()2()SaGjj121()()2gtgt32()()1gtgt而,故12()12()()2()()2SaGjGjj32()2()()2()2()SaGjGjj第三章连续信号的正交分解11(九)频域的微分与积分性质)()(jFtf若则,)()(djdFtjtfdjFttfjtf)()()()0(tttt1),(及)()()1(tjtjtt例11求的频谱函数解:jt1)(又211)(jjtt)sgn()sgn()2(tjtjttt21)3(2222jddjt221dtjt又21)(jttj)sgn(2121jjjjt第三章连续信号的正交分解12(十)卷积定理1.时域卷积定理)()()()(2121jFjFtftf证明:dtedtfftftfFtj])()([)]()([2121(变换积分次序)ddtetfftj])()[(21dejFfj)()(21)()(21jFjF2.频域卷积定理)]()([21)()(2121jFjFtftf第三章连续信号的正交分解13例12求三角形脉冲的频谱函数)(tf)(jFf1(t)f2(t)11*=0ω0ωττ×=0ω-τ/2τ/2t-τ/2τ/2t222121)]2([)()()]()([)(SajFjFtftfFjFτf△(t)-τ0τt)2()()(21SajFjF第三章连续信号的正交分解14关于微﹑积分特性的一个实用公式:若,且,dttdgtf)()()()(jGtg)()()()(ggjjFjG则)()(jFtf证明:)()()(ttgdgt)()()(gtgdgt)()()()()0()(0ggdttgdtetgFdtetgjFtj)()()(2ggjjFgjG01FjjFjjF(1))(2gjG(2)由(1)=(2),且将(3)代入(1)(3))()()()(ggjjFjG

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功