浙教新版七年级数学下册--第3章整式的乘除--单元测试卷-dayin

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

浙教新版七年级下学期《第3章整式的乘除》单元测试卷一.选择题(共10小题)1.计算(﹣2b)3的结果是()A.﹣8b3B.8b3C.﹣6b3D.6b32.下列计算中正确的是()A.a6÷a2=a3B.a6•a2=a8C.a9+a=a10D.(﹣a)9=a93.已知:2m=a,2n=b,则22m+2n用a,b可以表示为()A.a2+b3B.2a+3bC.a2b2D.6ab4.下列等式成立的是()A.(﹣1)0=﹣1B.(﹣1)0=1C.0﹣1=﹣1D.0﹣1=15.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣126.如图,边长为(m+3)的正方形纸片剪去一个边长为m的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是()A.2m+6B.4m+6C.4m+12D.2m+127.计算:=()A.B.C.D.8.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个9.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a,b的恒等式为()A.a2﹣2ab+b2=(a﹣b)2B.a2+2ab+b2=(a+b)2C.2a2+2ab=2a(a+b)D.a2﹣b2=(a+b)(a﹣b)10.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.52二.填空题(共10小题)11.已知2a=5,2b=3,求2a+b的值为.12.计算:(4x2y﹣2xy2)÷2xy=.13.已知m+2n+2=0,则2m•4n的值为.14.若(x+p)与(x+5)的乘积中不含x的一次项,则p=.15.一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:.16.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是.17.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=.18.我们知道,同底数幂的乘法法则为:am•an=am+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)19.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有项,系数分别为;(2)(a+b)n展开式共有项,系数和为.20.一块长方形铁皮,长为(5a2+4b2)m,宽为6a4m,在它的四个角上都剪去一个长为a3m的小正方形,然后折成一个无盖的盒子,这个无盖盒子的表面积是m2.三.解答题(共6小题)21.计算:3a2b•(﹣a4b2)+(a2b)322.计算:(a+1)2﹣a(a﹣1)23.先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.24.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.25.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:.(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.26.阅读下面的材料并填空:①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×③(1﹣)(1+)=1﹣,反过来,得1﹣==利用上面的材料中的方法和结论计算下题:(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣)浙教新版七年级下学期《第3章整式的乘除》单元测试卷参考答案与试题解析一.选择题(共10小题)1.A.2\B.3.已知:2m=a,2n=b,则22m+2n用a,b可以表示为()A.a2+b3B.2a+3bC.a2b2D.6ab∵2m=a,2n=b,∴22m+2n=(2m)2×(2n)2=a2b2.4.故选:B.5.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣12【解答】解:∵x2+kxy+36y2是一个完全平方式,∴k=±2×6,即k=±12,故选:D.6.如图,边长为(m+3)的正方形纸片剪去一个边长为m的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是()A.2m+6B.4m+6C.4m+12D.2m+12【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【解答】解:由面积的和差,得长方形的面积为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3).由长方形的宽为3,可得长方形的长是(2m+3).长方形的周长是2[(2m+3)+3]=4m+12.故选:C.7.计算:=()A.B.C.D.故选:A.8.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有﹣1的偶次幂都等于1.【解答】解:如果(x+6)x+1=1成立,则x+1=0或x+6=1或﹣1,即x=﹣1或x=﹣5或x=﹣7,当x=﹣1时,(x+6)0=1,当x=﹣5时,1﹣4=1,当x=﹣7时,(﹣1)﹣6=1,故选:C.9.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a,b的恒等式为()A.a2﹣2ab+b2=(a﹣b)2B.a2+2ab+b2=(a+b)2C.2a2+2ab=2a(a+b)D.a2﹣b2=(a+b)(a﹣b)【分析】分别计算这两个图形阴影部分的面积,根据面积相等即可得到关于a,b的恒等式.【解答】解:第一个图形的阴影部分的面积=a2﹣b2;第二个图形是长方形,则面积=(a+b)(a﹣b).∴a2﹣b2=(a+b)(a﹣b).故选:D.10.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.52故选:B.11.已知2a=5,2b=3,求2a+b的值为15.12.计算:(4x2y﹣2xy2)÷2xy=2x﹣y.故答案为:2x﹣y.13.已知m+2n+2=0,则2m•4n的值为.【解答】解:∵m+2n+2=0,∴m+2n=﹣2,∴2m•4n=2m•22n=2m+2n=2﹣2=.故答案为:.14.若(x+p)与(x+5)的乘积中不含x的一次项,则p=﹣5.【解答】解:(x+p)(x+5)=x2+5x+px+5p=x2+(5+p)x+5p,∵乘积中不含x的一次项,∴5+p=0,解得p=﹣5,15.一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:10cm.【分析】设正方形的边长是xcm,根据面积相应地增加了44cm2,即可列方程求解.【解答】解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=44,解得:x=10.故答案为:10cm.16.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是3a2+4ab﹣15b2.【分析】根据×底×高,求出三角形面积即可.【解答】解:三角形面积S=(2a+6b)(3a﹣5b)=(a+3b)(3a﹣5b)=3a2﹣5ab+9ab﹣15b2=3a2+4ab﹣15b2,故答案为:3a2+4ab﹣15b217.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=﹣.【分析】由6x=192,32y=192,推出6x=192=32×6,32y=192=32×6,推出6x﹣1=32,32y﹣1=6,可得(6x﹣1)y﹣1=6,推出(x﹣1)(y﹣1)=1,由此即可解决问.【解答】解:∵6x=192,32y=192,∴6x=192=32×6,32y=192=32×6,∴6x﹣1=32,32y﹣1=6,∴(6x﹣1)y﹣1=6,∴(x﹣1)(y﹣1)=1,∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=﹣【点评】本题考查幂的乘方与积的乘方,解题的关键是灵活运用知识解决问题,属于中考填空题中的压轴题.18.我们知道,同底数幂的乘法法则为:am•an=am+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=kn+2017(用含n和k的代数式表示,其中n为正整数)【分析】(1)将h(2)变形为h(1+1),再根据定义新运算:h(m+n)=h(m)•h(n)计算即可求解;(2)根据h(1)=k(k≠0),以及定义新运算:h(m+n)=h(m)•h(n)将原式变形为kn•k2017,再根据同底数幂的乘法法则计算即可求解.【解答】解:(1)∵h(1)=,h(m+n)=h(m)•h(n),∴h(2)=h(1+1)=×=;(2)∵h(1)=k(k≠0),h(m+n)=h(m)•h(n),∴h(n)•h(2017)=kn•k2017=kn+2017.故答案为:;kn+2017.【点评】考查了同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题的关键.19.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有5项,系数分别为1,4,6,4,1;(2)(a+b)n展开式共有n+1项,系数和为2n.【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【解答】解:(1)展开式共有5项,展开式的各项系数分别为1,4,6,4,1,(2)展开式共有n+1项,系数和为2n.故答案为:(1)5;1,4,6,4,1;(2)n+1,2n.【点评】本题考查完全平方式.本题主要是根据已知与图形,让学生探究,观察规律,锻炼学生的思维,属于一种开放性题目.20.一块长方形铁皮,长为(5a2+4b2)m,宽为

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功