初中数学课堂导入方法与技巧无棣朱希村课堂导入技能是教师在进行新课题时建立问题情景的教学方法。即指在新的教学内容的讲授开始时,教师引导学生进入学习状态的教学行为。无论是开始新的学科、新的教学单元,还是一节新课,乃至教学过程中引发学生的思维活动,教师都应当发挥良好的导入技巧。俗话说:“良好的开端是成功的一半”。引人入胜的导入可以给整个教学过程一个良好的开端,导入环节犹如整台戏的“序幕”,优美乐章的“序曲”,跳高运动员起跳前的“助跑”,仿佛是演讲的“开场白”,负有酝酿情绪,集中学生注意力,渗透主题和带入情境的任务。精心设计的导入,能唤起学生的注意力,启动学生思维的机器,激起学生浓厚的学习兴趣,形成学习动机,并为学习新知识作鼓动和铺垫,架起新旧知识的桥梁,就能牵引整个教学过程,起到先声夺人、一举成功的奇效。导入技能实施的程序是:集中注意力——引起兴趣——激发思维——明确目的——进入学习课题。教学中,由于教学内容的差异以及课的类型、教学目标各不相同,导入的方法也没有固定的章法可循。下面结合本人的教学实践,谈谈初中数学课堂导入的技巧。一、悬念导入法悬念导入法是在引入新课时,提出看起来与本课内容无多大联系,而实质上却紧密相连的典型问题,迅速激发学生思维的一种导入方法。亚里斯多德曾经讲过“思维自疑问惊讶开始。”设计悬念的目的主要有两点:一是激发兴趣,二是活跃思维。悬念一般是出乎人们预料,或展示矛盾,或让人迷惑不解,常能造成学生心理上的焦虑、渴望和兴奋,只想打破砂锅问到底,尽快知道究竟,而这种心态正是教学所需要的“愤”和“悱”的状态。一般来讲,数学中的悬念需要教师在深入钻研教材与分析学生知识储备的基础上进行精心设计、精心准备。例如:在讲授“圆周长”时,提问:假如把地球近似看作一球体,绕着赤道用一根绳子捆紧,然后把绳子放长10米(假设绳子离地球表面距离均等),中间的空隙能容纳。A一支铅笔B一只老鼠C一只猫D一头牛,结果学生猜测的答案与正确答案相差甚远,当我给出正确答案D时,学生感到不可思议,非常惊讶,使学生心理形成强烈的反差,形成悬念,激起了学生强烈的求知欲望。二、设疑导入法问题设疑是根据中学生喜好追根求源的心理特点,在新的教学内容讲授开始时,教师给学生创设一些疑问,创设矛盾,引起惊讶,使学生产生迫切学习的浓厚兴趣的一种导入发方法。引入时,可故意设置疑障或陷阱,使学生处于欲得而不能的情景,甚至诱导学生上当。例如:讲授“分式基本性质”时,先让学生解-2x=4,再解-2x﹤4,学生类比得出x﹤-2,然后让学生代个值检验试试,结果又不对,学生陷入茫然和矛盾之中,激发了学生的求知欲。运用此法必须做到:一是巧妙设疑。所设的疑点要有一定的难度,要能使学生暂时处于困惑状态,营造一种“心求通而未得通,口欲言而不能言”的情境。二是以疑激思,善问善导。要以此激发学生的思维,使学生的思维尽快活跃起来。因此,教师必须掌握一些设问的方法与技巧,并善于引导,使学生学会思考和解决问题。需要说明的是:设疑导入法与悬念导入法有相通之处,但又不完全相同。前者重在“疑”;后者重在疑的同时更要“悬”。三、实例导入法实例导入是选取与所授内容有关的生活实例或某种经历,通过对其分析,引申,演绎归纳出从特殊到一般、从具体到抽象的规律来导入新课.这种导入强调了实践性,能使学生产生亲切感,起到触类旁通之功效。同时让学生感觉到现实世界中处处充满数学。这种导入类型也是导入新课的常用方法,尤其对于抽象概念的讲解,采用这种方法更显得优越。例如:在讲授“二元一次方程组的解法”时,提问:小明买4千克苹果,3千克梨需27元;若买4千克苹果,2千克梨需22元,问梨和苹果每千克各多少钱?学生很快得出答案:苹果都是4千克,梨多一千克多了5元,所以梨每千克5元,得出苹果每千克3元。比直接给出方程组引入好的多。四、实验导入法实验导入法是指教师通过直观教具演示引导学生一动手试验而巧妙的引入新课的一种方法。一位数学家说过:“抽象的道理是重要的,但要用一切办法使它们能看的见摸的着。”实验导入新课直观生动,效果非凡。通过实验演示导入能将教学内容具体化形象化,有利于学生从形象思维过渡到抽象思维,增强学生的感性认识。学生自己动手试验,必然会引起学生的浓厚兴趣,从而活跃课堂气氛,使学生很快进入良好的学习状态。例如:在讲授“轴对称”时,让学生拿出一张纸,对折,打开,滴一滴墨水在折痕边或折痕上,合上,压一压,打开观察。得到一些漂亮的图案,学生惊喜万分,激发了学生强烈的求知欲,然后很自然的引如新课。五、趣味导入法趣味导入法就是通过与课堂内容相关的趣味知识,即数学家的故事、数学典故、数学史、歌曲、游戏、谜语等来导入新课。俄国教育学家乌申斯基认为:“没有丝毫兴趣的强制性学习将会扼杀学生探求真理的欲望”,美国著名心理学家布鲁诺也说过:“学习的最好刺激乃是对所学知识的兴趣”。趣味导入可以避免平铺直叙之弊,可以创设引人入胜的学习情境,有利于学生从无意注意迅速过渡到有意注意.1、故事导入方法例如:在讲授“配方法”时,讲这样一个故事:“从前一老头,在临终前打算把17头牛分给3个儿子,要求大儿子分二分之一,二儿子分三分之一,小儿子分九分之一,不能宰杀。(可留一点时间给学生思考)三个儿子听了很纳闷,最后一位聪明的人告诉他们,先在邻居家借一头牛,然后大儿子分9头,二儿子分6头,小儿子分2头,剩下一头再还给邻居。”这个故事即开启了学生思维的大门,又渗透了配方法中“借一还一”的思想,为新课讲授做好了铺垫。2、游戏导入法在讲授“游戏公平吗?”一课时,我设计了这样一个“转盘游戏”导入:同学们,我们经常在街边,看见有人摆地摊赚钱,我就见过这样一个——“转转盘”(拿出准备好的转盘),接着讲了游戏规则(如右图)。你想试试手气吗?,此时学生已经兴奋不已,都想试试,参与度极高,但结果总是拿不到大奖,又陷入了茫然与困惑之中,看着他们着急得样,我顺势引入了课题,结果这堂课学生个个都目不转睛,取得了很好的效果。3、儿歌导入法例如:在讲授用“字母表示数”时,我这样引导:同学们,小时候你们念过儿歌吗?今天我们也一起来念念儿歌:一只青蛙一张嘴,二只眼睛四条腿,扑通一声跳下水;二只青蛙二张嘴,四只眼睛八条腿,扑通扑通跳下水;三只青蛙三张嘴,六只眼睛十二条腿,扑通三声跳下水┅┅唱到后来,一部分同学唱不下去了,声音也越来越轻了,于是,我不失时机地问:“这首儿歌谁能把它唱完?学生说:“这样随着青蛙只数的增加永远也唱不完!”然后我紧接着说:“我能用一句话把它唱完,你们信不信?”这样一石激起千层浪,怎么可能?学生议论纷纷。趁机我说:“今天这节课我就想告诉大家如何用一句话把它唱完,同时也相信在座的每一位都能用一句话就把它唱完。不过在唱之前,我们先要做一个准备工作,我们先来学习《用字母表示数》,学习了这个内容以后,不用老师教,相信你们自己都能唱得起来了”。这时他们的求知欲望非常强烈,我也不失时机地引入了新课。4、诗词导入法例如:在讲授“三视图”时,开场白是:“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。”①你知道这首诗的作者与题目吗?(苏轼,《题西林壁》)②哪位同学能说说苏轼是怎样观察庐山的?(横看,侧看,近看,身处山中看),然后说,这首诗隐含了一些数学知识,他教会我们怎样去观察物体,本节课我们来学习“三视图”。5、幽默语言导入法例如:在讲授“三角函数的应用”时,一位教师如此开场白:“我的‘法力’无边,能不过河而测河宽,不爬山而知山高,不接近敌阵地而知晓敌我之间的距离。”学生被这些话深深地吸引,教师接着说:“我的‘法’是数学方法,我的‘宝’是三角函数”,同学大笑。6、数学史导入法数学史引入法是指在讲授数学概念、定理、方法时,首先给学生介绍一些有关的、有趣味性的数学家的传记或数学史实,从而导入新课的一种方法。这种方法可以通过榜样的力量去感染学生,增强学习毅力和创新精神,增强爱国主义精神,于德育于智育之中。例如:在讲授“勾股定理”时,向学生介绍毕达哥拉斯,也可以介绍我国古代的数学家,并介绍其发现的艰苦历程,激起学生学习的热情与积极性,进而导入新课。六、情境导入法情境导入法是指根据教学内容的特点运用语言、图片、音乐等手段,创设一定的情境渲染课堂气氛,使学生在潜移默化中进入新课学习的一种导入方法。前苏联著名教育学家赞可夫说:“教学法一旦触及学生的情绪和意志领域,触及学生的精神需要。这种教学法就能发挥高度有效的作用。”这种导入类型使学生感到身临其境,能激发学生的好奇心和求知欲,起到渗透教学目标的作用。例如:在讲授“形状相同的图形”时,设计了这样一个别开生面的课堂情境:以一曲振奋人心的国歌,伴随着自己精心设计的两面形状相同,大小不等的五星红旗,从大屏幕下冉冉升起,作为课堂的切入,很自然的引入新课。再例如:在讲授“三角形全等的判定”时,设计了这样的一个开场白:一块三角形的玻璃碎成了两块(拿出准备好的三角纸板——如图),如果重新到玻璃店割一块同样大小的玻璃,有三种做法:①把两块都拿到玻璃店去,②只拿第一部分,③只拿第二部分。问哪种方法不能买回新玻璃,哪种方法最聪明?通过创设情境导入,巧妙的引出三角形全等的判定。使枯燥的几何问题变得生动有趣,激发了学生的学习热情,调动起了学生的求知欲。七、类比分析导入法类比分析导入法是指教师在讲授新课时,引导学生对某些特殊知识经类比分析,得出与之相同或相似的另外一些特殊知识的导入方法。康德说过:“每当理智缺乏可靠论证的思路时,类比这个方法往往能指引我们前进。”通过类比,可以发现新旧知识的异同点,使知识向更深层或更广阔的领域迁移、发展,从而达到知识引申的目的。例如:在讲授“一元一次不等式解法”时,教师指出:方程的解法与不等式的解法有类似之处,我们可以用类似解一元一次方程的方法来研究一元一次不等式的解法。然后先让学生解一个一元一次方程,然后把等号变为不等号,得到一个一元一次不等式,再让学生解答。看似两三句话,但这样的导入能把学生已获的知识和技能从已知的对象迁移到未知的对象上去,同时促使学生迫不及待地去学习和研究新知识。八、温故知新导入法知识绝不是孤立的、割裂的。旧知识往往是新知识的基础,新知识往往是旧知识的延续。温故知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。这也是课堂教学中最常用的一种导入方法。例如:在讲授“零指数幂和负指数幂”时,先让学生回顾同底数幂的除法运算公式,am÷an=am-n(a≠0,m,n都是正整数,且mn),然后让学生讨论当m=n和m﹤n时的情况,从而引入新课。总之,“导入有法,导无定法”,不论以哪种方法和手段引入新课,必须根据教学目的,教学内容和学生的具体情况而定;都必须使问题情境结构、数学知识结构和学生的认识结构三者和谐统一;都要简明扼要,紧扣课题,不拖泥带水,不影响正课进行。通过导入,使学生在课堂上最终达到集中注意力,激发求知欲,明确学习任务,形成学习期待的目的。