八年级上学期期末复习试卷(代数几何压轴题)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

..正兴学校2015~2016学年八年级上学期期末复习清北班数学科试题(几何压轴题)1.定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.①摆出等边“整数三角形”;②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.【解答】解:(1)小颖摆出如图1所示的“整数三角形”:小辉摆出如图2所示三个不同的等腰“整数三角形”:(2)①不能摆出等边“整数三角形”.理由如下:设等边三角形的边长为a,则等边三角形面积为.因为,若边长a为整数,那么面积一定非整数.所以不存在等边“整数三角形”;②能摆出如图3所示一个非特殊“整数三角形”:2.(2008•江西)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.【解答】(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,在矩形ABCD中,AD∥BC,∴∠B′EF=∠BFE,∴∠B′FE=∠B'EF,∴B′F=B′E,∴B′E=BF;(2)答:a,b,c三者关系不唯一,有两种可能情况:(ⅰ)a,b,c三者存在的关系是a2+b2=c2.证明:连接BE,由(1)知B′E=BF=c,∵B′E=BE,∴四边形BEB′F是平行四边形,∴BE=c.在△ABE中,∠A=90°,∴AE2+AB2=BE2,∵AE=a,AB=b,∴a2+b2=c2;(ⅱ)a,b,c三者存在的关系是a+b>c.证明:连接BE,则BE=B′E.由(1)知B′E=BF=c,∴BE=c,在△ABE中,AE+AB>BE,∴a+b>c.班级:姓名:____________座号:_____________密封线第一届清北班数学试卷第4页共24页第一届清北班数学试卷第3页共24页3.(2007•鄂尔多斯)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.(1)解:正方形、长方形、直角梯形.(任选两个均可)(2)解:答案如图所示.M(3,4)或M′(4,3).(3)证明:连接EC,∵△ABC≌△DBE,∴AC=DE,BC=BE,∵∠CBE=60°,∴EC=BC=BE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,∴DC2+EC2=DE2,∴DC2+BC2=AC2.即四边形ABCD是勾股四边形.、4.(2013•莆田模拟)阅读下面材料,并解决问题:(I)如图4,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5.则∠APB=150°,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP.这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.(II)(拓展运用)已知△ABC三边长a,b,c满足.(1)试判断△ABC的形状等腰直角三角形(2)如图1,以点A为原点,AB所在直线为x轴建立平面直角坐标系,直接出点B,C的坐标B(12,0),C(6,6);(3)如图2,过点C作∠MCN=45°交AB于点M,N.请证明AM2+BN2=MN2;(4)在(3)的条件下,若点N的坐标是(8,0),则点M的坐标为(3,0);此时MN=5.并求直线CM的解析式.(5)如图3,当点M,N分布在点B异侧时.则(3)中的结论还成立吗?解:(Ⅰ)∵△ABC是等边三角形,∴∠BAC=60°,∵△ABP绕顶点A旋转到△ACP′处,∴△ACP′≌△ABP,∴P′A=PA=3,PB=P′C=4,∠PAP′=∠BAC=60°,∴△APP′是等边三角形,∴∠AP′P=60°,PP′=PA=3,在△P′PC中,P′P2+P′C2=32+42=25=PC2,∴∠PP′C=90°,∴∠APB=∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=150°;故答案是:150°,△ABP;..(Ⅱ)(1)整理得,|a﹣6|+(c﹣12)2+=0,由非负数的性质得,a﹣6=0,c﹣12=0,b﹣6=0,解得a=b=6,c=12,∵a2+b2=(6)2+(6)2=144=c2,∴△ABC是直角三角形,又∵a=b,∴△ABC是等腰直角三角形;(2)∵AB=c=12,∴点B(12,0),过点C作CD⊥x轴于D,则AD=CD=AB=×12=6,∴点C的坐标为(6,6);(3)如图,把△ACM绕点C逆时针旋转90°得到△BCM′,连接M′N,由旋转的性质得,AM=BM′、CM=CM′、∠CAM=∠CBM′=45°,∠ACM=∠BCM′,∴∠M′BN=∠ABC+∠CBN′=45°+45°=90°,∵∠MCN=45°,∴∠M′CN=∠BCN+∠BCM′=∠BCN+∠ACM=90°﹣∠MCN=90°﹣45°=45°,∴∠MCN=∠M′CN,在△MCN和△M′CN中,,∴△MCN≌△M′CN(SAS),∴MN=M′N,在Rt△M′NB中,BM′2+BN2=M′N2,∴AM2+BN2=MN2;(4)设AM=x,∵点N的坐标是(8,0),∴AN=8,BN=12﹣8=4,∴MN=8﹣x,由(3)的结论,x2+42=(8﹣x)2,解得x=3,∴AM=3,MN=8﹣3=5,∴点M的坐标(3,0);设直线CM的解析式为y=kx+b,∵点C(6,6),M(3,0),∴,解得,∴设直线CM的解析式为y=2x﹣6;(5)如图,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,把△BCN绕点C顺时针旋转90°得到△ACN′,由旋转的性质得,AN′=BN,CN′=CN,∠CAN′=∠CBN=135°,∴∠MAN′=135°﹣45°=90°,∴点N′在y轴上,∵∠MCN=45°,∴∠MCN′=90°﹣45°=45°,∴∠MCN=∠MCN′,在△MCN和△MCN′中,,∴△MCN≌△MCN′(SAS),∴MN=MN′,在Rt△AMN′中,AM2+AN′2=MN′2,∴AM2+BN2=MN2.5.如图,Rt△ABC中,∠ACB=90°,AC=BC=4cm,CD=1cm,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,至A点结束,设E点的运动时间为t秒,连接DE,当△BDE是直角三角形时,t的值为秒。第一届清北班数学试卷第8页共24页第一届清北班数学试卷第3页共24页【答案】522或1122或2或72。【解析】∵Rt△ABC中,∠ACB=90°,AC=BC=4cm,∴∠ABC=45°,AB=42(cm)。∵BC=4cm,CD=1cm,∴BD=3cm。若∠DEB=90°,则BE=22BD=322(cm)。6.如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.若图中阴影部分的面积是75a,则a为.解:将8条直线共15个交点求出.(不计与坐标系的,很简单,直接写)p1(1,a),p2(2,2a),p3(3,3a),p4(4,4a),p5(5,5a);q1(1,(a+1)),…q5(5,5(a+1));r1(1,(a+2))…r5(5,5(a+2))(p1离原点最近,r5离原点最远)用梯形公式求出各阴影部分面积并求和(底为纵坐标之差,高为1)S1=r1q1=;S2=(q1p1+q2p2)×1=;S3=((r2q2+r3q3)×1)=((2(a+2)﹣2(a+1))+(3(a+2)﹣3(a+1)))=,同理可得S4=,S5=(仿S3一样计算)∴S=S1+S2+S3+S4+S5=++++=12.5,∵S=75a,∴75a=12.5,∴a=.7.(2011•咸宁)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:P从点O出发平移次数可能到达的点的坐标1次(0,2),(1,0)2次3次(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数y=﹣2x+2的图象上;平移2次后在函数y=﹣2x+4的图象上…由此我们知道,平移n次后在函数y=﹣2x+2n的图象上.(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标...解:(1)如图所示:P从点O出发平移次数可能到达的点的坐标1次2次(0,4),(1,2),(2,0)3次(0,6),(1,4),(2,2),(3,0)(2)设过(0,2),(1,0)点的函数解析式为:y=kx+b(k≠0),则,解得,故第一次平移后的函数解析式为:y=﹣2x+2;∴答案依次为:y=﹣2x+2;y=﹣2x+4;y=﹣2x+2n.(3)设点Q的坐标为(x,y),依题意,.解这个方程组,得到点Q的坐标为.∵平移的路径长为x+y,∴50≤≤56.∴37.5≤n≤42.∵点Q的坐标为正整数,∴n是3的倍数,n可以取39、42,∴点Q的坐标为(26,26),(28,28)8.(2011•江西模拟)课题学习●探究:(1)在图1中,已知线段AB,CD,其中点分别为E,F.①若A(﹣1,0),B(3,0),则E点坐标为;②若C(﹣2,2),D(﹣2,﹣1),则F点坐标为;(2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.●归纳:无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=,y=.(不必证明)●运用:在图2中,y=|x﹣1|的图象x轴交于P点.一次函数y=kx+1与y=|x﹣1|的图象交点为A,B.①求出交点A,B的坐标(用k表示);②若D为AB中点,且PD垂直于AB时,请利用上面的结论求出k的值.解:探究(1)①(1,0);②(﹣2,);(2)过点A,D,B三点分别作x轴的垂线,垂足分别为A′,D′,B′,则AA′∥BB′∥DD′.过A、B分别作直线DD'的垂线,垂足分别为H、G.∴AH=BG,又AH=A′D′;BG=D′B′∴A′D′=D′B′.x﹣a=c﹣x,第一届清北班数学试卷第12页共24页第一届清北班数学试卷第3页共24页即D点的横坐标是.同理又HD=DG,d﹣y=y﹣b,可得D点的纵坐标是∴AB中点D的坐标为(,).●运用,,,∵.∴,k=0.9.(2013•江苏模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2证明:如图过A作AD⊥BC于D,则BD=BC﹣CD=a﹣CD在△ABD中:AD2=AB2﹣BD2在△ACD中:AD2=AC2﹣CD2AB2﹣

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功