1DCBOAPCBAPxyBOAP阿氏圆模型专题训练阿氏圆(阿波罗尼斯圆):已知平面上两定点A、B,则所有满足PA/PB=k(k不等于1)的点P的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。在初中的题目中往往利用逆向思维构造斜A型相似(也叫母子型相似或美人鱼相似)+两点间线段最短解决带系数两线段之和的最值问题。观察下面的图形,当P在在圆上运动时,PA、PB的长在不断的发生变化,但它们的比值却始终保持不变。解决阿氏圆问题,首先要熟练掌握母子型相似三角形的性质和构造方法。如图,在△ABC的边AC上找一点D,使得AD/AB=AB/AC,则此时△ABD∽△ACB。母子型相似(共角共边)DACB那么如何应用阿氏圆的性质解答带系数的两条线段和的最小值呢?我们来看一道基本题目:已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12APBP的最小值为(2)求13APBP的最小值为实战练习:1、已知⊙O半径为1,AC、BD为切线,AC=1,BD=2,P为弧AB上一动点,试求22PCPD的最小值2、已知点A(4,0),B(4,4),点P在半径为2的⊙O上运动,试求12APBP的最小值2yxOCBAP3、已知点A(-3,0),B(0,3),C(1,0),若点P为⊙C上一动点,且⊙C与y轴相切,(1)14APBP的最小值;(2)PABS的最小值.4、如图1,在平面直角坐标系xoy中,半⊙O交x轴与点A、B(2,0)两点,AD、BC均为半⊙O的切线,AD=2,BC=7.(1)求OD的长;(2)如图2,若点P是半⊙O上的动点,Q为OD的中点.连接PO、PQ.①求证:△OPQ∽△ODP;②是否存在点P,使2PDPC有最小值,若存在,试求出点P的坐标;若不存在,请说明理由.5、(1)如图1,已知正方形ABC的边长为4,圆B的半径为2,点P是圆B上的一个动点,求12PDPC的最小值和12PDPC的最大值.(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么23PDPC的最小值为;23PDPC的最大值为(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2.点P是圆B上的一个动点.那么12PDPC的最小值为;12PDPC的最大值为