空间几何体的结构、三视图和直观图§8.1一.基础梳理棱柱的概念复习ABCDEA’B’C’D’E’·H’H·底底两个互相平行的面叫做棱柱的底其余各面叫做棱柱的侧面两个面的公共边叫做棱柱的棱两个侧面的公共边叫做棱柱的侧棱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫棱柱侧面与底面的公共顶点叫做棱柱的顶点··········不在同一个面上的两个顶点的连线叫做棱柱的对角线·H’H··H’H··H’H··H’H··H’H·1、按侧棱是否和底面垂直分类:棱柱斜棱柱直棱柱正棱柱其它直棱柱2、按底面多边形边数分类:棱柱的分类三棱柱、四棱柱、五棱柱、······棱柱的性质(2)两个底面与平行于底面的平面的截面是全等的多边形。〔3)过不相邻的两条侧棱的截面是平行四边形。(1)侧棱都相等,侧面都是平行四边形。直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。四棱柱平行六面体长方体直平行六面体正四棱柱正方体底面变为平行四边形侧棱与底面垂直底面是矩形底面为正方形侧棱与底面边长相等几种六面体的关系:【知识梳理】棱锥1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做正棱锥。2、性质Ⅰ、正棱锥的性质(1)各侧棱相等,各侧面都是全等的等腰三角形。(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。正棱锥性质2棱锥的高、斜高和斜高在底面的射影组成一个直角三角形。棱锥的高、侧棱和侧棱在底面的射影组成一个直角三角形PARt⊿PEORt⊿POBRt⊿PEBRt⊿BEO棱台由棱锥截得而成,所以在棱台中也有类似的直角梯形。CBEOD棱锥棱锥正四棱锥正三棱锥正四面体体积V=Sh/3顶点在底面正多边形的射影是底面的中心棱柱侧棱垂直于底面直棱柱底面是正多边形正棱柱棱锥底面为正多边形,顶点在底面的射影为正多边形的中心正棱锥正棱台由正棱锥截的的棱台处理台体的思想方法是还台于锥。几何体几何特征图形多面体棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台•总结:棱柱,棱锥,棱台的结构特征旋转体圆柱圆锥圆台球分别以矩形的一边、直角三角形的直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体,分别叫做圆柱,圆锥,圆台。圆柱圆锥圆台顶点SABO底面轴侧面母线以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。圆锥的结构特征球的结构特征以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面,球面所围成的几何体叫作球体,简称球。球心半径直径O球的基本属性:球面可看作与定点(球心)的距离等于定长(半径)的所有点的集合.几何体几何特征图形旋转体圆柱以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱圆锥以直角三角形的一直角边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥圆台用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分,叫做圆台球以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体两个概念(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.平行投影法ABCDABCDcabdabcd投射线与投影面相倾斜的平行投影法-----斜投影法投射线与投影面相互垂直的平行投影法--------正投影法在一束平行光线的照射下形成的投射,叫做平行投影。平行投影分正投影和斜投影两种。三视图的形成物体向投影面投影所得到的图形称为视图。如果物体向三个互相垂直的投影面分别投影,所得到的三个图形摊平在一个平面上,则就是三视图。•三视图•正(主)视图——从正面看到的图•侧(左)视图——从左面看到的图•俯视图——从上面看到的图•画物体的三视图时,要符合如下原则:•位置:正视图侧视图俯视图•大小:长对正(主视与俯视)•高平齐(主视与左视)•宽相等(左视与俯视)一个规律三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.圆柱,圆锥三视图正视图侧视图俯视图正视图侧视图俯视图·球的三视图正视图侧视图俯视图几种基本几何体的三视图2.棱柱、棱锥的三视图几何体主视图左视图俯视图(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于o点.画直观图时,把它画成对应的x′轴、y′轴,使它确定的平面表示水平平面。(2)原图形中平行于x或y轴的线段,在直观图中分别画成平行于x′或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的一半.斜二测画法的步骤:xOy=45135或xOABCDEFMNOxyABCDEFMN4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度,平行于y轴的线段,长度变为.45°或135°不变原来的一半(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度.不变•基础联系1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为().A.0B.1C.2D.3解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②错,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案B2.(2012·杭州模拟)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是().A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.答案C()()3.某几何体的直观图如图所示,该几何体的主正视图和左侧视图都正确的是ADCBAB. D视图应有一条实对角线,且对角线应由上到下,左视时,看到一个矩形,且不能有实对角线,故淘汰、解,析:故选4.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是().A.正方形B.矩形C.菱形D.一般的平行四边形解析将直观图还原得▱OABC,则∵O′D′=2O′C′=22(cm),OD=2O′D′=42(cm),C′D′=O′C′=2(cm),∴CD=2(cm),OC=CD2+OD2=22+422=6(cm),OA=O′A′=6(cm)=OC,故原图形为菱形.答案C35..a如图是一个空间几何体的三视图,若它的体积是,则23.132332aaVa由三视图可知几何体为一个直三棱柱,底面三角形中,边长为的边上的高为,则,解析:所以题型一空间几何体的直观图【例1】►已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为().A.34a2B.38a2C.68a2D.616a2[审题视点]画出正三角形△ABC的平面直观图△A′B′C′,求△A′B′C′的高即可.解析如图①②所示的实际图形和直观图.由斜二测画法可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.答案D练习.已知△ABC的直观图是边长为a的等边△A1B1C1(如图),那么原三角形的面积为()A.B.C.D.223a243a226a26a解析在原图与直观图中有OB=O1B1,BC=B1C1.在直观图中,过A1作A1D1⊥B1C1,因为△A1B1C1是等边三角形,所以A1D1=在Rt△A1O1D1中,∵∠A1O1D1=45°,∴O1A1=根据直观图画法规则知:∴△ABC的面积为答案C,23a,26a,6262211aaAOOA.266212aaa例2.(2011·浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是().解析所给选项中,A、C选项的正视图、俯视图不符合,D选项的侧视图不符合,只有选项B符合.答案B题型二由三视图还原实物图【试一试】(2011·山东)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图,俯视图如右图.其中真命题的个数是().A.3B.2C.1D.0[尝试解答]如图①②③的正(主)视图和俯视图都与原题相同,故选A.答案A题型三由三视图求几何体的体积(2009·山东,4)一空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【例3】32π232π4332π2332π4由几何体的三视图,画出几何体的直观图,然后利用体积公式求解.解析该空间几何体为一圆柱和一四棱锥组成,圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为,高为,所以体积为所以该几何体的体积为答案C通过三视图间接给出几何体的形状,打破以往直接给出几何体并给出相关数据进行相关运算的传统模式,使三视图与传统意义上的几何体有机结合,这也体现了新课标的思想.思维启迪22)2(31,3323.332π2探究提高3知能迁移3一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为()A.B.C.D.解析由三视图知,该几何体为一圆锥,其中底面直径为2,母线长为2,S侧=πrl=π×1×2=2π.π33π2π3π4B练习.(2011·陕西)某几何体的三视图如图所示,则它的体积是().A.8-2π3B.8-π3C.8-2πD.2π3解析圆锥的底面半径为1,高为2,该几何体体积为正方体体积减去圆锥体积,即V=22×2-13×π×12×2=8-23π,正确选项为A.答案A一、选择题1.如图是由哪个平面图形旋转得到的()解析几何体的上部为圆锥,下部为圆台,只有A可以旋转得到,B得到两个圆锥,C得到一圆柱和一圆锥,D得到两个圆锥和一个圆柱.A定时检测2.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析在各自的三视图中①正方体的三个视图都相同;②圆锥的两个视图相同;③三棱台的三个视图都不同;④正四棱锥的两个视图相同,故选D.D3.(2011·安徽省皖南八校联考)如下图是一个物体的三视图,则此三视图所描述的物体的直观图是()解析:由俯视图的形状可知直观图是选项B或选项D中的一个,根据正视图和侧视图可知选项B错.故选D.答案:D4.(2011·浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是().解析A中正视图,俯视图不对,故A错.B中正视图,侧视图不对,故B错.C中侧视图,俯视图不对,故C错,故选D.答