高中物理选修3-5知识点一、动量守恒定律动量守恒第一个过程动量守恒两个物体组成的系统系统总能量守恒三个物体组成的系统第二个过程动量守恒系统总能量守恒二、量子理论的建立黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε=hν。h为普朗克常数(6.63×10-34J.S)2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。(普朗克的能量子理论很好的解释了黑体辐射)三、光电效应光子说光电效应方程1、光电效应(表明光子具有能量,证明光具有粒子性)(1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。(2)光电效应的研究结果:①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:Uce=EK;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,④当入射光的频率低于截止频率时不能发生光电效应;⑤效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。2、光子说:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。这些能量子被成为光子。3、光电效应方程:EK=h-WO同时,h截止=WO,Uce=EK四、康普顿效应(表明光子具有动量,证明光具有粒子性)1、1918-1922年康普顿(美)在研究石墨对X射线的散射时发现:光子在介质中和物质微粒相互作用,可以使光的传播方向发生改变,这种现象叫光的散射。2、在光的散射过程中,有些散射光的波长比入射光的波长略大.,这种现象叫康普顿效应。3、光子的动量:p=h/λ光子的能量ε=hν波速公式c=λν五、光的波粒二象性物质波概率波不确定关系1、光的波粒二象性:干涉、衍射和偏振........以无可辩驳的事实表明光是一种波;光电效应和康普顿效应..........又用无可辩驳的事实表明光是一种粒子,由于光既有波动性,又有粒子性,只能认为光具有波粒二象性。但不可把光当成宏观观念中的波,也不可把光当成宏观观念中的粒子。少量的光子表现出粒子性,大量光子运动表现为波动性;光在传播时显示波动性,与物质发生作用时,往往显示粒子性;频率小波长大的波动性显著,频率大波长小的粒子性显著。2、物质波:1924年德布罗意(法)提出,实物粒子和光子一样具有波动性,任何一个运动..着的物体都有一种与之对应的波,波长λ=h/p,这种波叫物质波,也叫德布罗意波。3、概率波:从光子的概念上看,光波是一种概率波。4、不确定关系:ΔxΔp≥(h/4π),△x表示粒子位置的不确定量,△p表示粒子在x方向上的动量的不确定量。(粒子位置的不确定量△x越小,粒子动量的不确定量△p越大,用单缝衍射进行解释)六、原子核式模型机构1、1897年汤姆孙(英)发现了电子...........,电子的发现证明原子可以再分.汤姆生...提出原子的枣糕模型。2、1909年起英国物理学家卢瑟福做了α粒子轰击金箔的实验,即α粒子散射实验得到出乎意料的结果:绝大多数....α粒子穿过金箔后仍沿原来的方向前进,少数α...粒子却发生了较大的偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回.....。3、卢瑟福的α粒子散射实验证明原子具有核式结构:在原子的中心有一个很小的核,叫做原子核,原子的全部正电....荷.和几乎全部质量......都集中在原子核里,带负电的电子在核外空间里绕着核旋转。按照这个学说,可很好地解释α粒子散射实验结果,α粒子散射实验的数据还可以估计..原子核的大小(数量级为10-15m)和原子核的正电荷数。七、氢原子的光谱1、光谱的种类:(1)发射光谱:物质发光直接产生的光谱。炽热的固体、液体及高温高压气体发光产生连续光谱;稀薄气体发光产生线状谱,不同元素的线状谱线不同,又称特征谱线。(2)吸收光谱:连续谱线中某些频率的光被稀薄气体吸收后产生的光谱,元素能发射出何种频率的光,就相应能吸收何种频率的光,因此吸收光谱也可作元素的特征谱线。2、基尔霍夫开创了光谱分析的方法:利用元素的特征谱线(线状谱或吸收光谱)鉴别物质的分析方法。八、原子的能级1、卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾(矛盾为:a、原子是不稳定的;b、原子光谱是连续谱),1913年玻尔(丹麦)在其基础上,把普朗克的量子理论运用到原子系统上,提出玻尔理论。2、玻尔理论的假设:氢原子的能级图nE/eV∞01-13.62-3.43-1.514-0.853E1E2E3(1)原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫做定态。氢原子的各个定态的能量值,叫做它的能级。原子处于最低能级时电子在离核最近的轨道上运动,这种定态叫做基态..;原子处于较高能级时电子在离核较远的轨道上运动的这些定态叫做激发态。(2)原子从一种定态(设能量为En)跃迁到另一种定态(设能量为Em)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即h=EnEm,(3)原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续...的,因此电子的可能轨道的分布也是不连续...的。3、玻尔计算公式:rn=n2r1,En=E1/n2(n=1,2,3)r1=0.5310-10m,E1=-13.6eV,分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量。(选定离核无限远处的电势能为零,电子从离核无限远处移到任一轨道上,都是电场力做正功,电势能减少,所以在任一轨道上,电子的电势能都是负值,而且离核越近,电势能越小动能越大加速度越大周期减小。)4、从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。5、一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N=N=n(n-1)/2。例一群氢原子处于量子数为n=4的激发态时,可能辐射出6种不同频率的光子.6、玻尔模型的成功之处在于它引入了量子概念(提出了能级和跃迁的概念,能解释气体导电时发光的机理、氢原子的线状谱),局限之处在于它过多地保留了经典理论(经典粒子、轨道等),无法解释复杂原子的光谱。7、现代量子理论认为电子的轨道只能用电子云来描述。8、光谱测量发现原子光谱是线状谱和夫兰克—赫兹实验证实了原子能量的量子化(即原子中分立能级的存在)九、原子核的组成1、1919年卢瑟福用α粒子轰击氮原子核发现质子即氢原子核。核反应方程147N+42He178O+11H2、卢瑟福预想到原子内存在质量跟质子相等的不带电的中性粒子,即中子。查德威克经过研究,证明中子的存在.汤姆孙(英)发现了电子.............核反应方程94Be+42He126C+10n3、质子和中子统称核子,具有相同的质子数和不同的中子数的原子互称同位素。4、天然放射现象(1)1896年贝克勒耳发现天然放射现象,天然放射的现象证明原子核有复杂结构..........①α射线带正电,α粒子就是氦原子核,贯穿本领很小,电离作用很强,使底片感光作用很强;②β射线带负电,是高速电子流,贯穿本领很强(几毫米的铝板),电离作用较弱;β射线中的电子是由原子核中的中子分裂产生的,不是核外电子③γ射线中电中性的,是波长极短的电磁波,贯穿本领最强(几厘米的铅板),电离作用很小。十、原子核的衰变半衰期1、原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。在衰变中电荷数和质量数都是守恒的(注意:质量并不守恒。)。γ射线是伴随..α射线或β射线产生的,没有单独的γ衰变(γ衰变:原子核...处于较高能级....,辐射光子后跃迁到低能级。)。α衰变举例23892U23490Th+42He;β衰变举例23490Th23491Pa+01e2、半衰期:放射性元素的原子核有半数发生衰变..........需要的时间。①放射性元素衰变的快慢是由核内部...本身的因素决定,与原子所处的物理状态或化学状态无关,②半衰期是对大量原子的统计规律..........。nNN)21(0,nmm)21(0。十一、放射性的应用与防护放射性同位素1、放射性同位素的应用:a、利用它的射线(贯穿本领、电离作用、物理和化学效应)b、做示踪原子。2、放射性同位素的防护:过量的射线对人体组织有破坏作用,这些破坏往往是对细胞核的破坏,因此,在使用放射性同位素时,必须注意人身安全,同时要放射性物质对空气、水源等的破坏。十二、核力与结合能质量亏损1、由于核子间存在着强大的核力(核子之间的引力,特点:①核力与核子是否带电无关②短程力,其作用范围为m10100.2,只有相邻的核子间才发生作用),所以核子结合成原子核或原子核分解为核子时,都伴随着巨大的能量变化。核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量叫原子核的结合能,亦称核能。比结合能越大,则原子核结合的越牢固.2、我们把核子结合生成原子核,所生成的原子核的质量比生成它的核子的总质量要小些,这种现象叫做质量亏损。爱因斯坦在相对论中得出物体的质量和能量间的关系式2mcE2mcE,就是著名的质能联系方程,简称质能方程。1u相当于931.5MeV十三、原子核的人工转变原子核在其他粒子的轰击下产生新核的过程,称为核反应(原子核的人工转变)。在核反应中电荷数和质量数都是守恒的。举例:(1)如α粒子轰击氮原子核发现质子;(2)1934年,约里奥·居里和伊丽芙·居里夫妇在用α粒子轰击铝箔时,除探测到预料中的中子外,还探测到了正电子。核反应方程2713Al+42He3015P+10n,3015P3014Si+01e这是第一次用人工方法得到放射性同位素。十四、重核的裂变轻核的聚变1、凡是释放核能的核反应都有质量亏损。核子组成不同的原子核时,平均每个核子的质量亏损是不同的,所以各种原子核中核子的平均质量不同。核子平均质量小的,每个核子平均放的能多。铁原子核中核子的平均质量最小,所以铁原子核最稳定。凡是由平均质量大的核,生成平均质量小的核的核反应都是释放核能的。2、1938年德国化学家哈恩和斯特拉斯曼发现重核裂变,铀核裂变的核反应方程n3KrBanU109236141561023592。例3、由于中子的增殖使裂变反应能持续地进行的过程称为链式反应。为使其容易发生,最好使用纯铀235。因为原子核非常小,如果铀块的体积不够大,中子从铀块中通过时,可能还没有碰到铀核就跑到铀块外面去了,因此存在能够发生链式反应的铀块的最小体积,即临界体积。发生链式反应的条件是裂变物的体积大于临界体积,并有中子进入。应用有原子弹、核反应堆。核反应堆的能量主要来自于重核裂变4、轻核结合成质量较大的核叫聚变。(例:nHeHH10423121)发生聚变的条件是:超高温(几百万度以上),因此聚变又叫热核反应。可以用原子弹来引起热核反应。应用有氢弹、可控热核反应。太阳的能量来自于轻核聚变.