1/19合肥市瑶海区2019-2020学年八年级上期末数学试卷含答案解析~学年度八年级上学期期末数学试卷一、选择题(本题共10小题,每小题4分,满分40分,每小题只有一个选项符合题意)1.点P(﹣4,3)在哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.163.下列函数中,y随x的增大而减小的函数是()A.B.y=6﹣2xC.D.y=﹣6+2x4.下图中表示y是x函数的图象是()A.B.C.D.5.下列图形中,不是轴对称图形的是()A.①⑤B.②⑤C.④⑤D.①②6.一次函数y=kx+k的图象可能是()A.B.C.D.7.将一副三角板按图中方式叠放,则∠AOB等于()A.90°B.105°C.120°D.135°8.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走m停下,则这个微型机器人停在()2/19A.点A处B.点B处C.点C处D.点E处9.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分EGC.直线BG,CE的交点在AF上D.△DEG是等边三角形10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4二、填空题(共4小题,每小题5分,满分20分)11.点P(5,﹣3)关于x轴对称的点P′的坐标为.12.已知一次函数y=kx+5的图象经过点(﹣1,2),则k=.13.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.3/19三、解答题(共2小题,满分16分)15.如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.16.已知正比例函数y=k1x的图象与一次函数y=k2x﹣9的图象交于点P(3,﹣6).(1)求k1,k2的值;(2)如果一次函数y=k2x﹣9与x轴交于点A,求A点坐标.四、(共2小题,满分16分)17.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.18.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.五、(共2小题,满分20分)19.已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.4/1920.为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a=;b=;m=;(2)求出y1,y2与x之间的函数关系式.六、解答题(共1小题,满分12分)21.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.七、(共1小题,满分12分)22.如图,在△ABD和△ACE中,有四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)5/19八、(共1小题,满分14分)23.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.6/19~学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分,每小题只有一个选项符合题意)1.点P(﹣4,3)在哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:点P(﹣4,3)在第二象限,故选:B.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【考点】三角形三边关系.【专题】探究型.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.下列函数中,y随x的增大而减小的函数是()A.B.y=6﹣2xC.D.y=﹣6+2x【考点】一次函数的性质.【分析】根据一次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵k=>0,∴y随x的增大而增大,故本选项错误;B、∵k=﹣2<0,∴y随x的增大而减小,故本选项正确;C、∵k=>0,∴y随x的增大而增大,故本选项错误;D、∵k=2>0,∴y随x的增大而增大,故本选项错误.故选B.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小是解答此题的关键.4.下图中表示y是x函数的图象是()A.B.C.D.7/19【考点】函数的图象.【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【解答】解:根据函数的定义,表示y是x函数的图象是C.故选C.【点评】理解函数的定义,是解决本题的关键.5.下列图形中,不是轴对称图形的是()A.①⑤B.②⑤C.④⑤D.①②【考点】轴对称图形.【专题】图表型.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此作答.【解答】解:①不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意;②有一条对称轴,是轴对称图形,不符合题意;③有三条对称轴,是轴对称图形,不符合题意;④有一条对称轴,是轴对称图形,不符合题意;⑤不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意.故轴对称图形有:①⑤.故选A.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.6.一次函数y=kx+k的图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故B正确.故选B.【点评】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限是解答此题的关键.7.将一副三角板按图中方式叠放,则∠AOB等于()8/19A.90°B.105°C.120°D.135°【考点】三角形的外角性质.【分析】根据三角形内角与外角的性质可得∠3=∠1+∠2=45°+30°=75°,再根据邻补角的性质可得∠AOB的度数.【解答】解:根据三角板可得∠1=45°,∠2=30°,则∠3=∠1+∠2=45°+30°=75°,故∠AOB=180°﹣75°=105°,故选:B.【点评】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.8.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处【考点】规律型:图形的变化类.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,÷6=335…2,行走了335圈又两米,即落到C点.【解答】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走m停下,则这个微型机器人停在C点.故选:C.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出为6的倍数余数是几.9.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分EGC.直线BG,CE的交点在AF上D.△DEG是等边三角形9/19【考点】轴对称的性质.【分析】认真观察图形,根据轴对称图形的性质得选项A、B、C都是正确的,没有理由能够证明△DEG是等边三角形.【解答】解:A、因为此图形是轴对称图形,正确;B、对称轴垂直平分对应点连线,正确;C、由三角形全等可知,BG=CE,且直线BG,CE的交点在AF上,正确;D、题目中没有60°条件,不能判断是等边三角形,错误.故选D.【点评】本题考查了轴对称的性质;解决此题要注意,不要受图形误导,要找准各选项正误的具体原因是正确解答本题的关键.10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4【考点】全等三角形的判定与性质.【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形AEC全等,由全等三角形的对应边相等得到BD=CE,本选项正确;②由三角形ABD与三角形AEC全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD垂直于CE,本选项正确;④利用周角减去两个直角可得答案.【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;10/19④∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故此选项正确,故选:D.【点评】此题考查了全等三角形的判定与性质,以及等腰直角三角形的性质,熟练掌握全等三角形