(修订)第9章-弯曲应力与弯曲变形-习题解答

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第9章弯曲应力与弯曲变形习题解答题9–1试计算下列各截面图形对z轴的惯性矩Iz(单位为mm)。解:(a)mm317400250500350200400250250500350cy49323mm107314002502003171240025050035025031712500350.IZ(b)mm431550400800500375550400400800500cy410323mm1054615504003754311255040080050040043112800500.IZ(c)mm3060202060506020102060cy46323mm103616020503012602020601030122060.ZI3505050Cz500400CzC2060z(a)(b)(c)题9-1图50080080100150100202题9–2悬臂梁受力及截面尺寸如图所示。设q=60kN/m,F=100kN。试求(1)梁1–1截面上A、B两点的正应力。(2)整个梁横截面上的最大正应力和最大切应力。解:(1)求支反力(↑)kN220100260AF()mkN32021001260AM(2)画FS、M图mkN320100kN220kNFSxxM(3)求1-1截面上A、B两点的正应力mkN1305016011001.MBF2m1mAq11100ABzyO题9-2图15020403A点:MPa254Pa1025412150100550101306331...IyMzAtB点:MPa162Pa107816112150100350101306331....IyMσzBc(4)求最大正应力和最大切应力MPa853Pa10385361501010320623maxmax...WMσzMPa22Pa10221501010220232363max..AFτS题9-3简支梁受力如图所示。梁为圆截面,其直径d=40mm,求梁横截面上的最大正应力和最大切应力。解:(1)求支反力(↓)=(↑)AFBFkN10203(2)画FS、M图120100ABMe=4.4kN·md题9-3图4FSx20kN2kN•m2.4kN•mMx(3)求最大正应力与最大切应力382MPaPa10381.97320.04π102.4633maxmaxzWMσ21.2MPaPa1021.20.02π10203434623maxmaxAFτS题9-4空心管梁受载如图所示。已知管的外径D=60mm,内径d=38mm,管材的许用应力[σ]=150MPa,试校核此梁的强度(长度单位为mm)。解:(1)求支反力250150120Me=1.2kN·mF=20kNABCDdD题9-4图5(↑)(↑)kN510.FAkN59.FB(2)画FS、M图(3)校核强度63306038107816330132060π132π54343.Dd...DWMPa5147Pa104714710781106252653maxmax....WMσz满足强度要求。题9-5某圆轴的外伸部分系空心圆截面,载荷如图所示,其许用应力[σ]=120MPa,试校核其强度(长度单位为mm)。解:(1)求支反力(↑)(↑)kN363.FAkN647.FBABCDEF1=5kNF2=3kNF3=3kN800400200300题9-5图φ60φ45FSMxx10.5kN9.5kN2.625mkN1.2mkN6(2)画M图Mx1.344mkN0.028mkN0.9mkN(3)校核强度C点:63.4MPaPa1063.4320.06π101.344633maxmaxzWMσB点:75.06045Dd543101.450.751320.06πzW62.1MPaPa1062.1101.45100.9653maxmaxzWMσ题9–6一单梁桥式吊车如图所示,梁为№28b工字钢制成,电葫芦和起重量总重F=30kN,材料的许用正应力[σ]=140MPa,许用切应力[]=100MPa,试校核梁的强度。解:(1)求支反力(↑)15kNBAFF题9-6图F6m7(2)画M图(当吊车在梁中间时有最大弯矩)(3)校核强度查表得:24m1061A36m10534xW84.3MPaPa1084.27105341045663maxmaxxWMσ4.9MPaPa104.9210611030643maxmaxAFτS题9–7外伸梁受力如图所示.已知:F=20kN,[σ]=160MPa,[]=90MPa,试选择工字钢的型号。解:(1)求支反力(↓)(↑)5kNAF25kNBF(2)画FS、M图ABCF4m1m题9-7图Mx45mkNMx20mkNFSx20kN5kN8(3)选择工字钢型号根据正应力强度选择工字钢的型号zWMmax33663maxcm125m10125101601020MWz查表得:№16的3cm141xW24m1013126.A切应力强度校核7.7MPaPa107.71026.1311020643maxmaxAFτS选择№16工字钢。题9–8一矩形截面梁如图所示。已知:F=2kN,横截面的高宽比h/b=3;材料的许用应力[σ]=8MPa,试选择横截面的尺寸。解:(1)求支反力(↑)3kN22323FFFBA1m1m1m1mFFFABbh题9-8图9(2)画M图(3)选择横截面的尺寸2maxmaxmax6bhMWMz∵,代入上式3bhbh396max3Mbcm7m069010831042323633max.Mbcm21733bh题9–9外伸梁受力如图所示,梁为T形截面。已知:q=10kN/m,材料的许用应力[σ]=160MPa,试确定截面尺寸a。解:(1)求支反力(↑)(↑)kN340AFkN380BF(2)画FS、M图题9-9图3m1mABCq5aaCz4aa4mkN3mkNMxFSxmkN340mkN350mkN1010(3)确定截面尺寸a①CZaaaaaaaaaaaZC95.1445345.05②截面对形心轴的惯性矩zI422322336707495.14312452195.14125aaaaaaaaaaaIz③确定截面尺寸azIyMmaxmaxmaxmaxyMIzmm221m0212010160707369514510980363...a题9-10一受均布载荷的外伸梁,梁为№18工字钢制成,许用应力[σ]=160MPa,试求许可载荷。MxmkN980Mm5kN11解:(1)求支反力(↑)qqFFBA51021(2)画M图qMMBA2qqqM5.25.2535中(3)求许可载荷查表得:№18的36m10185xWxWMmaxxWq5.212kN/m1184N/m2.5101851016066q题9–11简支梁受力如图所示,梁为№25a槽钢制成,许用应力[σ]=160MPa,试求在截面横放和竖放两种情况下的许用力偶Me。6m2m2mABCDq题9–10图Mx2.5q2q2q12解:(1)求支反力(↑)(↓)5eAMF5eBMF(2)画M图(3)求许用力偶矩截面横放,查表得:36m10630.WyyWMmax6610160106.3053eMm8.16kNm8160N31030.610160566eM截面竖放,查表得:36m10270xWm72kNm72000N31027010160566eM3m2mMeABC题9-11图Mx53eM52eM13题9–12铸铁梁受力和截面尺寸如图所示。已知:q=10kN/m,F=20kN,许用拉应力[σt]=40MPa,许用压应力[σc]=160MPa,试按正应力强度条件校核梁的强度。若载荷不变,将T形截面倒置成为⊥形,是否合理?2m1mABCqCz题9-12图3mDF3020020030解:(1)求支反力0BM01524FqFA(↑)kN30412052104152FqFA0yF02BAFFqF(↑)kN1030202102ABFFqF(2)画M图(3)强度校核①求形心czMxmkN20mkN1014157.5mm23152200302152003010020030cz②惯性矩zI462323m10600.030.20.15750.215120.030.20.20.030.10.1575120.20.03zI③强度校核A截面:tPa1024.210600.07251020663max,maxmax,zttIyMσcPa1052.510600.15751020663max,maxmax,zccIyMσB截面:tPa1026.2510600.15751010663max,maxmax,zttIyMσ满足强度要求。载荷不变,将T形截面倒置成为⊥形,不合理。因为在A截面上弯矩最大,此时,将使该截面处的拉应力变大。而铸铁抗拉能力差。题9–13图示各梁,弯曲刚度EI均为常数。试用积分法求各梁的转角方程和挠曲线方程,以及指定截面的转角和挠度。(a)求θB,wB(b)求θA,wA(a)解:(1)取坐标轴如图,列弯矩方程eMxM(2)建立微分方程并积分EIMxwe22dd(a)ABlABlql(b)Me题9-13图qABlMexx15(a)CEIxMxwθedd(b)DCxEIxMwe22(3)确定积分常数当时,,代入(a)、(b)两式0x00w,θ0,0DC∴转角方程(c)EIxMxe挠曲线方程(d)EIxMxwe22(4)求BBw,θ将代入(c)(d)得:lx()(↑)EIlMeBEIlMweB22(b)解:(1)取坐标轴如图,列弯矩方程22qxqlxxM(2)建立微分方程并积分21dd222qxqlxEIxw(a)CqxqlxEIxwθ621dd32(b)DCxqxqlxEIw246143(3)确定积分常数当时,,代入(a)(b)两式lx00w,θABlqlqxx162411,3243qlDqlC∴转角方程(c)31621332qlqxqlxEIx挠曲线方程(d)24113224614343qlxqlqxqlxEIxw(4)求AAw,θ将代入(c)(d)得:0x()(↑)EIqlA323EIqlwA24114题9–14用积分法求图示梁的转角方程和挠曲线方程,梁的弯曲刚度EI为常数。解:(1)取坐标轴如图,列弯矩方程222qxqlxxM(2)建立微分方程并积分221dd222qxql

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功