GNSS技术介绍

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一部分、GNSS导航系统1.1GPS系统(美国的全球卫星定位系统)1、GPS系统的组成①空间部分——GPS卫星星座GPS卫星星座由21颗工作卫星和3颗在轨备用卫星组成,运行周期11小时58分钟(对于地面观测者来说,每天将提前4分钟见到同一颗GPS卫星),轨道面数6个,位于地平线以上的卫星颗数随着时间和地点的不同而不同,最少可见到4颗,最多可以见到11颗(接收机看到超过11颗的有可能是接受到日本的SBAS卫星)②地面控制部分——地面监控系统GPS工作卫星的地面监控系统包括一个主控站、三个注人站和五个监测站。主控站设在美国本上科罗拉多,三个注人站分别设在大西洋的阿森松岛、印度洋的迪戈加西亚岛和太平洋的卡瓦加兰,五个监测站除了位于主控站和三个注人站之处的四个站以外,还在夏威夷设立了一个监测站。(都由美国政府和军方控制,主要是为了控制卫星和给卫星提供播发星历等)。③用户设备部分——GPS信号接收机接收GPS卫星发射信号,以获得必要的导航和定位信息,经数据处理,完成导航和定位工作。GPS接收机硬件一般由主机、天线和电源组成。2、GPS信号的组成(码分多址技术)GPS卫星发送的导航定位信号一般包括载波、测距码和数据码(或称D码)三类信号。GPS卫星广播L1和L2两种频率的信号,其中L1信号载波频率为1575.42MHz,并调制了P/Y码、C/A码和数据码(或称D码);L2信号载波频率为1227.60MHz,测距码仅调制了P/Y码,其中P/Y码为军用码,C/A码为民用码。GPS导航电文(D码)是包含有关卫星星历、卫星工作状态、时间系统、卫星钟运行状态、轨道摄动改正、大气折射改正和由C/A码捕获P码等导航数据码。导航电文是利用GPS进行定位的基础。GPS信号现代化:系统计划新增4个信号,L2和L5新增2个民用信号(就是某些接收机上标注的L2C和L5),在L1和L2上新增2个军用信号。3、坐标系统与时间系统时间体统采用的是UTC时间,整个地球分为二十四时区,每个时区都有自己的本地时间。在国际无线电通信场合,为了统一起见,使用一个统一的时间,称为通用协调时(UTC,UniversalTimeCoordinated)。UTC与格林尼治平均时(GMT,GreenwichMeanTime)一样,都与英国伦敦的本地时相同,北京时区是东八区,领先UTC八个小时。坐标系统采用的是WGS84:WGS-84坐标系是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。在国内我们往往采用的是国家坐标(北京54、西安80、新北京54等)或地方坐标,因此需要坐标转换求取当地转换参数。1.2GLONASS系统(俄罗斯的全球卫星定位系统)1、系统的组成①空间部分——GLONASS卫星星座GLONASS星座由21颗工作星和3颗备份星组成,所以GLONASS星座共由24颗卫星组成。24颗星均匀地分布在3个近圆形的轨道平面上,这三个轨道平面两两相隔120度,每个轨道面有8颗卫星。②地面支持系统地面支持系统由系统控制中心、中央同步器、遥测遥控站(含激光跟踪站)和外场导航控制设备组成。地面支持系统的功能由前苏联境内的许多场地来完成。随着苏联的解体,GLONASS系统由俄罗斯航天局管理,地面支持段已经减少到只有俄罗斯境内的场地了,系统控制中心和中央同步处理器位于莫斯科,遥测遥控站位于圣彼得堡、捷尔诺波尔、埃尼谢斯克和共青城。③用户设备部分——GLONASS信号接收机接收GLONASS卫星发射信号,以获得必要的导航和定位信息,经数据处理,完成导航和定位工作。GLONASS接收机硬件一般由主机、天线和电源组成。2、GLONASS信号的组成(频分多址技术)与美国的GPS系统不同的是GLONASS系统采用频分多址(FDMA)方式,根据载波频率来区分不同卫星(GPS是码分多址(CDMA),根据调制码来区分卫星)。每颗GLONASS卫星发播的两种载波的频率分别为L1=1,602+0.5625K(MHZ)和L2=1,246+0.4375K(MHZ),其中K=1~24为每颗卫星的频率编号。所有GPS卫星的载波的频率是相同,均为L1=1575.42MHZ和L2=1227.6MHZ。GLONASS卫星的载波上也调制了两种伪随机噪声码:S码和P码。俄罗斯对GLONASS系统采用了军民合用、不加密的开放政策。3、坐标系统与时间系统时间体统采用的是UTC时间,整个地球分为二十四时区,每个时区都有自己的本地时间。在国际无线电通信场合,为了统一起见,使用一个统一的时间,称为通用协调时(UTC,UniversalTimeCoordinated)。UTC与格林尼治平均时(GMT,GreenwichMeanTime)一样,都与英国伦敦的本地时相同,北京时区是东八区,领先UTC八个小时。坐标系统采用的是pz-90坐标1.3伽利略定位系统(欧盟)“伽利略”系统是世界上第一个基于民用的全球卫星导航定位系统,在2008年投入运行后,全球的用户将使用多制式的接收机,获得更多的导航定位卫星的信号,将无形中极大地提高导航定位的精度,这是“伽利略”计划给用户带来的直接好处。另外,由于全球将出现多套全球导航定位系统,从市场的发展来看,将会出现GPS系统与“伽利略”系统竞争的局面,竞争会使用户得到更稳定的信号、更优质的服务。世界上多套全球导航定位系统并存,相互之间的制约和互补将是各国大力发展全球导航定位产业的根本保证。“伽利略”计划是欧洲自主、独立的全球多模式卫星定位导航系统,提供高精度,高可靠性的定位服务,实现完全非军方控制、管理,可以进行覆盖全球的导航和定位功能。“伽利略”系统还能够和美国的GPS、俄罗斯的GLONASS系统实现多系统内的相互合作,任何用户将来都可以用一个多系统接收机采集各个系统的数据或者各系统数据的组合来实现定位导航的要求。“伽利略”系统可以发送实时的高精度定位信息,这是现有的卫星导航系统所没有的,同时“伽利略”系统能够保证在许多特殊情况下提供服务,如果失败也能在几秒钟内通知客户。与美国的GPS相比,“伽利略”系统更先进,也更可靠。美国GPS向别国提供的卫星信号,只能发现地面大约10米长的物体,而“伽利略”的卫星则能发现1米长的目标。一位军事专家形象地比喻说,GPS系统,只能找到街道,而“伽利略”则可找到家门。1.4北斗定位系统北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由三颗(两颗工作卫星、一颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,其定位精度与GPS相当。北斗一号导航定位卫星由中国空间技术研究院研究制造。三颗导航定位卫星的发射时间分别为:2000年10月31日;2000年12月21日;2003年5月25日,第三颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥“双保险”作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括:定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。1.5GNSS卫星星历GNSS卫星星历是轨道参数的具体表现形式。卫星星历是实现定位与导航的基础,是空基的精确已知点。GPS星历包括广播星历和精密星历。广播星历包括参考历元瞬间的开普勒轨道6参数,反映摄动力影响的9个参数,以及参考时刻参数和星历数据龄期,共计17个星历参数。精密星历是按一定的时间间隔(通常为15min)来给出卫星在空间的三维坐标、三维速度和卫星钟改正数等信息。由于这种星历通常是在事后向用户提供的,因此成为后处理星历。GLONASS广播星历的内容主要包括:卫星的历书号、星历的历元、卫星钟偏差、卫星相对频率偏差、电文帧时间、卫星位置及速度等参数,共计17个卫星参数。第二部分、GNSS定位基本概念(1)静态定位和动态定位按照用户接收机在定位过程中所处的运动状态,分为静态定位和动态定位两类。静态定位:在定位过程中,接收机的位置是固定的,处于静止状态。这种静止状态是相对的。在卫星大地测量学中,所谓静止状态,通常是指待定点的位置,相对其周围的点位没有发生变化,或变化极其缓慢,以致在观测期内(数天或数星期)可以忽略。静态定位主要应用于测定板块运动、监测地壳形变、大地测量、精密工程测量、地球动力学及地震监测等领域。动态定位:在定位过程中,接收机天线处于运动状态。(2)绝对定位和相对定位按照参考点的不同位置,分为绝对定位和相对定位两类。绝对定位(或单点定位):独立确定待定点在坐标系中的绝对位置。由于目前GPS系统采用WGS-84系统,因而单点定位的结果也属该坐标系统。绝对定位的优点是一台接收机即可独立定位,但定位精度较差。该定位模式在船舶、飞机的导航,地质矿产勘探,暗礁定位,建立浮标,海洋捕鱼及低精度测量领域应用广泛。相对定位:确定同步跟踪相同的GPS信号的若干台接收机之间的相对位置的方法。可以消除许多相同或相近的误差(如卫星钟、卫星星历、卫星信号传播误差等),定位精度较高。但其缺点是外业组织实施较为困难,数据处理更为烦琐。在大地测量、工程测量、地壳形变监测等精密定位领域内得到广泛的应用。在绝对定位和相对定位中,又都包含静态定位和动态定位两种方式。为缩短观测时间,提供作业效率,近年来发展了一些快速定位方法,如准动态相对定位法和快速静态相对定位法等。静态相对定位的基本观测量为载波相位,由于目前静态相对定位的精度可达10-6—10-8,所以仍旧是精密定位的基本模式。(3)差分定位差分技术很早就被人们所应用。它实际上是在一个测站对两个目标的观测量、两个测站对一个目标的两次观测量之间进行求差。其目的在于消除公共项,包括公共误差和公共参数。在以前的无线电定位系统中已被广泛地应用。差分定位采用单点定位的数学模型,具有相对定位的特性(使用多台接收机、基准站与流动站同步观测)。差分GPS定位原理根据差分GPS基准站发送的信息方式可将差分GPS定位分为三类,即:位置差分、伪距差分、相位差分。这3类差分方式的工作原理是相同的,即都是由基准站发送改正数,由用户站接收并对其测量结果进行改正,以获得精确的定位结果。所不同的是,发送改正数的具体内容不一样,其差分定位精度也不同。①位置差分原理这是一种最简单的差分方法,任何一种GPS接收机均可改装和组成这种差分系统。安装在基准站上的GPS接收机观测4颗卫星后便可进行三维定位,解算出基准站的坐标。由于存在着轨道误差、时钟误差、SA影响(已取消)、大气影响、多径效应以及其他误差,解算出的坐标与基准站的已知坐标是不一样的,存在误差。基准站利用数据链将此改正数发送出去,由用户站接收,并且对其解算的用户站坐标进行改正。最后得到的改正后的用户坐标已消去了基准站和用户站的共同误差,例如卫星轨道误差、SA影响(已取消)、大气影响等,提高了定位精度。以上先决条件是基准站和用户站观测同一组卫星的情况。位置差分法适用于用户与基准站间距离在100km以内的情况。②伪距差分原理伪距差分是目前用途最广的一种技术。几乎所有的商用差分GPS接收机均采用这种技术。国际海事无线电委员会推荐的RTCMSC-104也采用了这种技术。在基准站上的接收机要求得它至可见卫星的距离,并将此计算出的距离与含有误差的测量值加以比较。利用一个α-β滤波器将此差值滤波并求出其偏差。然后将所有卫星的测距误差传输给用户,用户利用此测距误差来改正测量的伪距。最后,用户利用改

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功