2013福建理科数学第1页2013年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013福建,理1)已知复数z的共轭复数z=1+2i(i为虚数单位),则z在复平面内对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限2.(2013福建,理2)已知集合A={1,a},B={1,2,3},则“a=3”是“AB”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(2013福建,理3)双曲线24x-y2=1的顶点到其渐近线的距离等于().A.25B.45C.255D.4554.(2013福建,理4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为().A.588B.480C.450D.1205.(2013福建,理5)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为().A.14B.13C.12D.106.(2013福建,理6)阅读如图所示的程序框图,若输入的k=10,则该算法的功能是().A.计算数列{2n-1}的前10项和B.计算数列{2n-1}的前9项和C.计算数列{2n-1}的前10项和D.计算数列{2n-1}的前9项和7.(2013福建,理7)在四边形ABCD中,AC=(1,2),BD=(-4,2),则该四边形的面积为().A.5B.25C.5D.108.(2013福建,理8)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是().A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点9.(2013福建,理9)已知等比数列{an}的公比为q,记bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),则以下结论一定正确的是().A.数列{bn}为等差数列,公差为qmB.数列{bn}为等比数列,公比为q2mC.数列{cn}为等比数列,公比为qm2D.数列{cn}为等比数列,公比为qmm10.(2013福建,理10)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T2013福建理科数学第2页={f(x)|x∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是().A.A=N*,B=NB.A={x|-1≤x≤3},B={x|x=-8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.(2013福建,理11)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为________.12.(2013福建,理12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.13.(2013福建,理13)如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=223,AB=32,AD=3,则BD的长为________.14.(2013福建,理14)椭圆Γ:22221xyab(a>b>0)的左、右焦点分别为F1,F2,焦距为2C.若直线y=3(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于________.15.(2013福建,理15)当x∈R,|x|<1时,有如下表达式:1+x+x2+…+xn+…=11x.两边同时积分得:111112222220000011ddddd1nxxxxxxxxx,从而得到如下等式:23111111111ln22223212nn.请根据以上材料所蕴含的数学思想方法,计算:2310121111111CCCC2223212nnnnnnn________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(2013福建,理16)(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?2013福建理科数学第3页17.(2013福建,理17)(本小题满分13分)已知函数f(x)=x-alnx(a∈R).(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.2013福建理科数学第4页18.(2013福建,理18)(本小题满分13分)如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为(0,10).分别将线段OA和AB十等分,分点分别记为A1,A2,…,A9和B1,B2,…,B9.连结OBi,过Ai作x轴的垂线与OBi交于点Pi(i∈N*,1≤i≤9).(1)求证:点Pi(i∈N*,1≤i≤9)都在同一条抛物线上,并求该抛物线E的方程;(2)过点C作直线l与抛物线E交于不同的两点M,N,若△OCM与△OCN的面积比为4∶1,求直线l的方程.2013福建理科数学第5页19.(2013福建,理19)(本小题满分13分)如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0).(1)求证:CD⊥平面ADD1A1;(2)若直线AA1与平面AB1C所成角的正弦值为67,求k的值;(3)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼接成一个新的四棱柱.规定:若拼接成的新四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由).20.(2013福建,理20)(本小题满分14分)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为π,04.将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移π2个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式;(2)是否存在x0∈ππ,64,使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数;若不存在,说明理由;(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.2013福建理科数学第6页21.(2013福建,理21)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4—2:矩阵与变换已知直线l:ax+y=1在矩阵1201A对应的变换作用下变为直线l′:x+by=1.①求实数a,b的值;②若点P(x0,y0)在直线l上,且0000xxAyy,求点P的坐标.(2)(本小题满分7分)选修4—4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为π24,,直线l的极坐标方程为ρπcos4=a,且点A在直线l上.①求a的值及直线l的直角坐标方程;②圆C的参数方程为1cos,sinxy(α为参数),试判断直线l与圆C的位置关系.(3)(本小题满分7分)选修4—5:不等式选讲设不等式|x-2|<a(a∈N*)的解集为A,且32∈A,12A.①求a的值;②求函数f(x)=|x+a|+|x-2|的最小值.2013福建理科数学第7页2013年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:D解析:由z=1+2i,得z=1-2i,故复数z对应的点(1,-2)在第四象限.2.答案:A解析:若a=3,则A={1,3}B,故a=3是AB的充分条件;而若AB,则a不一定为3,当a=2时,也有AB.故a=3不是AB的必要条件.故选A.3.答案:C解析:双曲线24x-y2=1的顶点为(±2,0),渐近线方程为12yx,即x-2y=0和x+2y=0.故其顶点到渐近线的距离|2|2255145d.4.答案:B解析:由频率分布直方图知40~60分的频率为(0.005+0.015)×10=0.2,故估计不少于60分的学生人数为600×(1-0.2)=480.5.答案:B解析:a=0时,方程变为2x+b=0,则b为-1,0,1,2都有解;a≠0时,若方程ax2+2x+b=0有实数解,则Δ=22-4ab≥0,即ab≤1.当a=-1时,b可取-1,0,1,2.当a=1时,b可取-1,0,1.当a=2时,b可取-1,0,故满足条件的有序对(a,b)的个数为4+4+3+2=13.6.答案:A解析:当k=10时,执行程序框图如下:S=0,i=1;S=1,i=2;S=1+2,i=3;S=1+2+22,i=4;……S=1+2+22+…+28,i=10;S=1+2+22+…+29,i=11.7.解析:∵AC·BD=1×(-4)+2×2=0,∴AC⊥BD.又|AC|=2125,|BD|=224216425,S四边形ABCD=12|AC||BD|=5.8.答案:D解析:选项A,由极大值的定义知错误;对于选项B,函数f(x)与f(-x)的图象关于y轴对称,-x0应是f(-x)的极大值点,故不正确;对于C选项,函数f(x)与-f(x)图象关于x轴对称,x0应是-f(x)的极小值点,故不正确;而对于选项D,函数f(x)与-f(-x)的图象关于原点成中心对称,故正确.9.答案:C解析:∵{an}是等比数列,∴1mnmmnmaa=qmn+m-m(n-1)-m=qm,∴1nncc=1211121··mnmnmnmmnmnmnmaaaaaa=(qm)m=qm2.10.答案:D解析:由题意(1)可知,S为函数y=f(x)的定义域,T为函数y=f(x)的值域.由(2)可知,函数y=f(x)在定义域内单调递增,对于A,可构造函数y=x-1,x∈N*,y∈N,满足条件;2013福建理科数学第8页对于B,构造函数8,1,51,13,2xyxx满足条件;对于C,构造函数ππtan22yx,x∈(0,1),满足