1、如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.2、如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.3、如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.4、如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.5、已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.6、如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.7、如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.8、如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.9、如图,在中,,,为边的中点,以为边作等边,连接,.(1)求证:;(2)若,在边上找一点,使得最小,并求出这个最小值.参考答案1、证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中∴△AOE≌△COF(ASA),∴AE=CF.2、(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)解:∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.3、解:(1)如图,作EG⊥AB于点G,则S△ABE=×AB×EG=30,则AB•EG=60,∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.4、证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.5证明:(1)∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.6、(1)∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm.7(1)∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO=∠ECO,在△AOD和△COE中,,∴△AOD≌△COE(ASA),∴AD=CE,∵CE∥AB,∴四边形AECD是平行四边形,又∵CD是Rt△ABC斜边AB上的中线,∴CD=AD,∴四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,∴AC⊥ED,在Rt△AOD中,tan∠DAO==tan∠BAC=,设OD=3x,OA=4x,则ED=2OD=6x,AC=2OA=8x,由题意可得:=24,解得:x=1,∴OD=3,∵O,D分别是AC,AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.8(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,∴S△ADF=×.9(1)证明:在中,,为边的中点,∴,.∵为等边三角形,∴,,∴,,∴∴(2)解:如图,作点关于直线点,连接交于点.则点即为符合条件的点.由作图可知:,,.∴,∴为等边三角形,∴,∴,在中,,,∴,,∴,∴的最小值为.