第1页(共19页)黄冈中学2018-2019学度初一下年中数学试卷含解析解析一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,点P(﹣3,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.下列调查中,适合用全面调查方式的是()A.了解我国东海水域是否受到日本核辐射污染B.了解我们班50名同学上次月考数学成绩C.了解一批节能灯泡的使用寿命D.了解一批我国最新生产的核弹头的杀伤半径3.如图,表示下列某个不等式的解集,其中正确的是()A.x>2B.x<2C.x≥2D.x≤﹣24.若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是()A.a>cB.a<cC.a<bD.b<c5.不等式组的解集在数轴上的表示是()A.B.C.D.6.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90﹣110这一组的频数是()A.2B.4C.6D.147.平面直角坐标系中,点A(﹣2,a)位于x轴的上方,则a的值可以是()A.0B.﹣1C.D.±3第2页(共19页)8.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)9.如图,在正方形网格中,A点坐标为(﹣1,0),B点坐标为(0,﹣2),则C点坐标为()A.(1,1)B.(﹣1,﹣1)C.(﹣1,1)D.(1,﹣1)10.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)二、填空题11.要使有意义,则x的取值范围是.12.当a时,式子15﹣7a的值是正数.13.点Q(,﹣2)在第象限.14.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是.15.不等式4x≤8的正整数解为.16.若方程组的解满足方程x+y+a=0,则a的值为第3页(共19页)17.若点M(a﹣3,a+4)在x轴上,则点M的坐标是.18.若2x2a﹣b﹣1﹣3y3a+2b﹣16=10是关于x,y的二元一次方程,则a+b=.19.下表为吉安市某中学七(1)班学生将自己的零花钱捐给“春雷计划”的数目,老师将学生捐款数目按10元组距分段,统计每个分数段出现的频数,则a=,b=,全班总人数为个.钱数目(元)5≤x≤1515≤x≤2525≤x≤3535≤x≤4545≤x≤55频数2a20143百分比0.0400.220b0.3500.07520.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是.(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值时0;③[x)﹣x的最大值是1;④存在实数x,使[x)﹣x=0.5成立.三、解答题(共60分)21.解方程组(1);(2).22.解下列不等式(组)(1)﹣2>;(2).23.已知不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解为方程2x﹣ax=3的解,求a的值.24.某校为了进一步丰富学生的课外体育活动,欲增购一些体育器材,为此该校对一部分学生进行了一次题为“你最喜欢的体育活动”的问卷调查(2009•宁德)某刊物报道:“2008年12月15日,两岸海上直航、空中直航和直接通邮启动,‘大三通’基本实现.‘大三通’最直接好处是省时间和省成本,据测算,空运平均每航次可节省4小时,海运平均每航次可节省22小时,以两岸每年往来合计500万人次计算,则共可为民众节省2900万小时…”根据文中信息,求每年采用空运和海运往来两岸的人员各有多少万人次.26.已知关于x,y的二元一次方程组的解满足二元一次方程,求m的值.27.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:第4页(共19页)(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.28.某房地产开发公司计划建A、B两种户型的经济适用住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:AB成本(万元/套)2528售价(万元/套)3034(1)该公司对这两种户型住房有哪几种建房方案?(2)若该公司所建的两种户型住房可全部售出,则采取哪一种建房方案获得利润最大?(3)根据市场调查,每套A型住房的售价不会改变,每套B型住房的售价将会降低a万元(0<a<6),且所建的两种户型住房可全部售出,该公司又将如何建房获得利润最大?第5页(共19页)2014-2015学年湖北省黄冈中学七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,点P(﹣3,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【专题】计算题.【分析】根据点的横纵坐标特点,判断其所在象限,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).【解答】解:∵点(﹣3,4)的横纵坐标符号分别为:﹣,+,∴点P(﹣3,4)位于第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键.2.下列调查中,适合用全面调查方式的是()A.了解我国东海水域是否受到日本核辐射污染B.了解我们班50名同学上次月考数学成绩C.了解一批节能灯泡的使用寿命D.了解一批我国最新生产的核弹头的杀伤半径【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了解我国东海水域是否受到日本核辐射污染适合用抽样调查;了解我们班50名同学上次月考数学成绩适合用全面调查;了解一批节能灯泡的使用寿命适合用抽样调查;了解一批我国最新生产的核弹头的杀伤半径适合用抽样调查;故选:B.第6页(共19页)【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图,表示下列某个不等式的解集,其中正确的是()A.x>2B.x<2C.x≥2D.x≤﹣2【考点】在数轴上表示不等式的解集.【分析】根据数轴上不等式的解集得出选项即可.【解答】解:从数轴可知:x<2,故选B.【点评】本题考查了在数轴上表示不等式的解集的应用,能够读图是解此题的关键.4.若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是()A.a>cB.a<cC.a<bD.b<c【考点】不等式的定义.【分析】找出不等关系是解决本题的关键.【解答】解:由图一可知:2a=3b,a>b;由图二可知:2b=3c,b>c.故a>b>c.故选A.【点评】解决问题的关键是读懂图意,进而列出正确的不等式.5.不等式组的解集在数轴上的表示是()第7页(共19页)A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别把两条不等式解出来,然后判断哪个选项表示的正确.【解答】解:由(1)式x<2,由(2)x>﹣1,所以﹣1<x<2.故选C.【点评】本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90﹣110这一组的频数是()A.2B.4C.6D.14【考点】频数与频率.【专题】计算题.【分析】根据频数的定义,从数据中数出在90~110这一组的频数即可.【解答】解:跳绳次数在90~110之间的数据有91,93,100,102四个,故频数为4.故选B.【点评】本题考查了频数的定义.频数是指每个对象出现的次数,一般称落在不同小组中的数据个数为该组的频数.7.平面直角坐标系中,点A(﹣2,a)位于x轴的上方,则a的值可以是()A.0B.﹣1C.D.±3【考点】点的坐标.【分析】根据平面直角坐标系可得a为正数,进而可选出答案.【解答】解:∵点A(﹣2,a)位于x轴的上方,第8页(共19页)∴a为正数,故选:C.【点评】此题主要考查了点的坐标,关键是掌握x轴的上方的点的纵坐标为正,x轴的下方的点的纵坐标为负.8.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)【考点】坐标与图形变化-平移.【专题】动点型.【分析】直接利用平移中点的变化规律求解即可.【解答】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.9.如图,在正方形网格中,A点坐标为(﹣1,0),B点坐标为(0,﹣2),则C点坐标为()A.(1,1)B.(﹣1,﹣1)C.(﹣1,1)D.(1,﹣1)【考点】点的坐标.【分析】以点A向右1个单位为坐标原点建立平面直角坐标系,然后写出点C的坐标即可.【解答】解:∵A点坐标为(﹣1,0),B点坐标为(0,﹣2),∴建立平面直角坐标系如图所示,第9页(共19页)∴点C的坐标为(1,1).故选A.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系并根据已知点的坐标确定出坐标原点的位置是解题的关键.10.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)【考点】点的坐标.【专题】压轴题;规律型.【分析】利用行程问题中的相遇问题,由于矩形的长宽分别为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:矩形的长宽分别为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;第10页(共19页)②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲、乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.