11.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o气泡流动:连续流体中的气泡或者液泡。o液滴流动:连续气体中的离散流体液滴。o活塞流动:在连续流体中的大的气泡o分层自由面流动:由明显的分界面隔开的非混合流体流动。•气-固两相流:o充满粒子的流动:连续气体流动中有离散的固体粒子。o气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。o流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。从床底不断充入的气体使得颗粒得以悬浮。改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。•液-固两相流o泥浆流:流体中的颗粒输运。液-固两相流的基本特征不同于液体中固体颗粒的流动。在泥浆流中,Stokes数通常小于1。当Stokes数大于1时,流动成为流化(fluidization)了的液-固流动。o水力运输:在连续流体中密布着固体颗粒o沉降运动:在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。在澄清层和沉降层中间,是一个清晰可辨的交界面。•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子:泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2.多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面2分别简称欧拉法和拉格朗日法。欧拉法即为两相流模型,拉格朗日法即为离散相模型欧拉法着眼于空间的点,基本思想是考察空间一个点上的物理量及其变化。在欧拉方法中,FLUENT将不同的相被处理成互相贯穿的连续介质。各相的体积率是时间和空间的连续函数,其体积分率之等于1。欧拉法中两相流模型包括:VOF(thevolumeoffluid)模型,混合模型和欧拉一欧拉模型VOF模型(VolumeofFluidModel)混合模型(MixtureModel)欧拉模型(EulerianModel)2.1VOF模型(VolumeofFluidModel)�VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0α11,表示该控制容积中有两相交界面;�VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。VOF模型在应用的过程中存在某些局限性:(l)在利用该模型进行模拟时要求所有的控制体积必须被任何一种流体相或混合相所填满,即不能存在无流体流动的区域;(2)只允许一相流体是可压缩的;(3)很难对具有混合物料和反应存在的流动进行模拟;(4)相间存在较大速度差时,界面的速度精度会受到很大的影响。2.2混合模型(MixtureModel)混合模型(MixtureModel)是一种简化的两(多)相流模型,它使用单流体方用于模拟各相有不同速度的两(多)相流,但是假定了在短空间尺度上局部的,相之间的耦合很强。同时也用于模拟有强烈藕合的各向同性相流和各相以相度运动的两(多)相流。混合模型可以通过求解混合相的动量、连续性和能量,第二相的体积分率方程,以及相对速度的代数表达式模拟多相(fluldorculate)。典型的应用包括低负载的粒子负载流,沉降,旋风分离器以及气相容很低的泡状流。混合物模型也可用于没有离散相相对速度的均匀多相流。��考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速3度的概念,允许相以不同的速度运动;�用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流;�缺点:界面特性包括不全,扩散和脉动特性难于处理。2.3欧拉模型(EulerianModel)欧拉一欧拉模型(Euler-EulerModel)是两(多)相流中最复杂的两(多)相流模型,也称为双流体模型。连续相与分散相被视为连续的一体。欧拉一欧拉模型对每一相都建立动量方程和连续性方程,通过压力和相间交换系数的藕合来计算求解。欧拉模型的应用包括气泡柱、颗粒悬浮以及流化床的模拟。有人将其成功地应用欧拉-模型模拟了鼓泡塔中两(多)相流的模拟及气泡聚并和破碎的影响。�—欧拉模型;�温度和密度,这些流体其存在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;�输运取决于与气相间的相互作用而不是颗粒间的相互作用;�几种多相流模型的选择�VOF模型适合于分层流动或自由表面流;�Mixture和Eulerian模型适合于流动中有混合或分离,或者离散相的体积份额超过10%-12%的情况。Mixture模型和Eulerian模型区别�Mixture模型;如果离散相只集中在一部分,使用Eulerian模型;�interphasedraglaws时,Eulerian模型通常比Mixture模型能给出更精确的结果;�拉格朗日法着眼于流体的质点,基本思想是跟踪每个流体质点在流动过程中的运动全过程,记录每个质点在每一时刻、每一位置的各个物理量及变化。在拉格朗日方法中,FLUENT将主体相视为连续相,稀疏相视为离散颗粒,主体相用欧拉4法,而离散相利用拉格朗日法进行粒子跟踪,这就是所谓的欧拉一拉格朗日模型。此模型中需要离散相体积含量不超过15%,离散相和主体相都有自己的压力、粘度及湍流扩散稀疏参数,并在拉格朗日坐标系中考察离散相颗粒的运动轨迹。该模型能详细地分析粒子/液滴间的作用力以及流体间复杂的作用力,避免了应用大量的经验关系,又避免了离散相数值解的扩散问题,虽然计算量庞大,但是相对欧拉模型来讲,精度要更高一些。比较了各种模型,认为离散相模型能更准确地模拟气—固两相流动,能更好的跟踪固体颗粒、气泡、液滴在连续相中运动轨迹。3.选择基本原则通常,你一旦决定了采用何种模式最能符合实际的流动,那么就可以根据以下的原则来挑选最佳的模型。•对于体积率小于10%的气泡、液滴和粒子负载流动,采用离散相模型。•对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合物模型或者欧拉模型。•对于活塞流,采用VOF模型。•对于分层/自由面流动,采用VOF模型。•对于气动输运,如果是均匀流动,则采用混合物模型;如果是粒子流,则采用欧拉模型。•对于流化床,采用欧拉模型模拟粒子流。•对于泥浆流和水力输运,采用混合物模型或欧拉模型。•对于沉降,采用欧拉模型。•对于更加一般的,同时包含若干种多相流模式的情况,应根据最感兴趣的流动特征,选择合适的流动模型。此时由于模型只是对部分流动特征做了较好模拟,其精度必然低于只包含单个模式的流动。Fluent软件中对喷雾这类气液两相流问题的模拟主要采用其自带的离散相模型(DPM——DiscretePhaseModel)。此模型是以欧拉—拉格朗日方法为基础建立的。它把流体作为连续介质,在欧拉坐标系内加以描述,对此连续相求解输送方程,而把雾滴颗粒群作为离散体系,通过积分拉氏坐标系下的颗粒作用力微分方程来求解离散相颗粒的轨道,可以计算出这些颗粒的轨道以及由颗粒引起5的热量/质量传递。同时,在计算中,相间耦合以及耦合结果对离散相轨道、连续相流动的影响均可考虑进去。当计算颗粒的轨道时,Fluent跟踪计算颗粒沿轨道的热量、质量、动量的得到与损失,这些物理量可作用于随后的连续相的计算中去。于是,在连续相影响离散相的同时,用户也可以考虑离散相对连续相的作用。交替求解离散相与连续相的控制方程,直到二者均收敛(二者计算解不再变化)为止,这样,就实现了双向耦合计算。在采用FLUENT中的离散相模型时,需要定义每个粒子尺寸以及温度。这些初始条件以及有关离散相物理性质的输入量/质量计算的必要条件。轨迹以及热量/质量传递的计算是粒子的对流或辐射传热、质量传递以及粒子在流场运动时的。而预测所得的轨迹以及相关的质量、热量传递可以通过1稳态问题建立及求解程序纲要建立和求解稳态离散相问题的一般程序如下所示:(l)求解连续相流动;(2)生成离散相的入射;(3)根据需要选择是否连续相与离散相关联求解;(4)用画图或者提取数据来跟踪离散相入射。2非稳态问题建立及求解程序纲要建立和求解非稳态离散相问题的一般程序如下所示:(l)生成离散相入射;(2)初始化流场;(3)取合适的时间步长数目进行求解。随着求解的进行,粒子的位置将会被更新。利用Fluent自带的空气雾化喷嘴模型预测雾化颗粒的颗粒行为。首先假设不带颗粒的空气为连续相,对其进行单相模拟。之后,假设雾化喷嘴喷出的甲烷颗粒为离散相,进行了气液两相耦合模拟。单相稳态模拟的基础上打开DPM模型(DiscretePhaseModel)加入离散相——甲烷雾滴进行两相耦合模拟,重点介绍了DPM中参数的设定。1打开DPM模型利用Define/Models/DiscretePhaseModel打开DPM,本文截取了DiscretePhaseModel设置面板的一部分,对其中参数的设定进行详细的分析,如图1所示。6图1DiscretePhaseModel面板当模拟两相耦合过程时,用户应该首先计算得到收敛或部分收敛的连续相流场,然后再创建喷射源进行耦合计算。在每一轮离散相的计算,FLUENT计算颗粒/液滴轨迹并且更新每一个流体计算单元内的相间动量、热量以及质量交换项。然后,这些交换项就会作用到随后的连续相的计算。耦合计算时FLUENT在连续相迭代计算的过程中,按照一定的迭代步数间隔来计算离散相迭代。直到连续相的流场计算结果不再随着迭代步数加大而发生变化(即,达到了所有的收敛标准),耦合计算才会停止。当达到收敛时,离散相的轨迹也不再发生变化(若离散相轨迹发生变化将会导致连续相流场的变化)。耦合计算的设定步骤如下:1.计算连续相流场;2.在DiscretePhaseModelpanel面板中,激活InteractionwithContinuousPhase选项;3.在NumberOfContinuousPhaseIterationsPerDPMIteration文本框中设定颗粒轨迹的计算频率(即连续相迭代多少步,就进行一轮离散相的计算)。若用户设定此参数为5,即意味着在连续相进行了五步迭代之后,就开始离散相的迭代计算。两个离散相计算中间应该间隔多少连续相的迭代步,要视用户问题的物理意义而定。需要注意的是,【***若此参数设定为0,那么FLUENT将不进行离散相的计算。】另外,图1中绿色圈的2个参数是最大计算步数(Max.NumberOfSteps)和积分尺度(LengthScale)。最大计算步数(Max.NumberOfSteps)是用积分方程(1),(2)求解颗粒轨道时,允许的最大时间步数。当某个颗粒轨道计算达到此时间步数时,FLUENT就自动中止了此颗粒的轨道计算,输出时,此颗粒被标记为“incomplete”。对最大时间步数的规定消除7了对某些在流场中不停循环的颗粒的无休止的计算。但是,对于缺省的500步的最大时间步数,很多问题的计算都不止这么多。这种情况下,当颗粒信息在输出时被标记未完成,而实际颗粒并不是在流场中无休止的打转,那么,用户可以增加最大时间步数[注]值得注意的是:设定上述各个参数的一个简便方法是,若用户希望颗粒穿越长度为D的计算域,那么用长度标尺乘以最大积分时间步数,其结果应该大致等于