1.1分类计数原理与分步计数原理用一个大写的的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?.361026,109~0,26种不同的号码所以总共可以编出个共有阿拉伯数字个因为英文字母共有?征吗你能说说这个问题的特探究.,.:,的号码也是各不相同的码与用阿拉伯数字编出号因此用英文字母编出的相同字母、阿拉伯数字各不由于英文一个阿拉伯数字编号可以用一个英文字母或每个座位字的出现或最重要的特征是上述问题中问题1问题2.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4班,汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法,第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法;所以从甲地到乙地共有4+2+3=9种方法。一、分类计数原理完成一件事,有两类办法.在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数.1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理说明N=m+n种不同的方法问题3、用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,···,B1,B2,···的方式给教室里的座位编号,总共能编出多少个不同的号码?字母数字得到的号码A123456789A1A2A3A4A5A6A7A8A9树形图.5496,,96:个不同的号码因此共有相同而且它们各不个号码字中的任何一个组成一个数都能与个英文字母的任意一个由于前我们还可以这样来思考,:,.上述问题中最重要的特征是字的出现每个座位由一个英文字母和一个阿拉伯数字构成每个英文字母与不同的数字组成的号码是各不相同的和?探究你能说说这个问题的特征吗二、分步计数原理完成一件事,需要两个步骤。做第1步有m种不同的方法,做第2步有n种不同的方法,则完成这件事共有2)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数.1)各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,将各个步骤的方法数相乘得到完成这件事的方法总数,又称乘法原理说明N=m×n种不同的方法加法原理乘法原理联系区别一完成一件事情共有n类办法,关键词是“分类”完成一件事情,共分n个步骤,关键词是“分步”区别二每类办法都能独立完成这件事情。每一步得到的只是中间结果,任何一步都不能能独立完成这件事情,缺少任何一步也不能完成这件事情,只有每个步骤完成了,才能完成这件事情。分类计数原理和分步计数原理,回答的都是关于完成一件事情的不同方法的种数的问题。区别三各类办法是互斥的、并列的、独立的各步之间是相关联的分类计数与分步计数原理的区别和联系:例1在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学生物学化学医学物理学工程学数学会计学信息技术学法学如果这名同学只能选一个专业,那么他共有多少种选择呢?解:这名同学在A大学中有5种专业选择,在B大学中有4种专业选择。根据分类计数原理:这名同学可能的专业选择共有5+4=9种。例2、设某班有男生30名,女生24名。现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?例3、肥城市的部分电话号码是0538323××××,后面每个数字来自0~9这10个数,问可以产生多少个不同的电话号码?变式:若要求最后4个数字不重复,则又有多少种不同的电话号码?053832310101010×××=104分析:分析:=504010987×××例3、书架上第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育杂志.(2)从书架的第1、2、3层各取1本书,有多少种不同取法?N=4+3+2=9N=4×3×2=24(1)从书架上任取1本书,有多少种不同的取法?解:需先分类再分步.(3)从书架上取2本不同种的书,有多少种不同的取法?根据两个基本原理,不同的取法总数是N=4×3+4×2+3×2=26第一类:从一、二层各取一本,有4×3=12种方法;第二类:从一、三层各取一本,有4×2=8种方法;第三类:从二、三层各取一本,有3×2=6种方法;答:从书架上取2本不同种的书,有26种不同的取法.例4、要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左右两边墙上的指定位置,问共有多少种不同的挂法?:,23可以分两步完成边墙上幅分别挂在左、右两幅画中选取从解1,31,3;第步从幅画中选幅挂在左边墙上有种方法2,21,2.第步从剩下的幅画中选幅画挂在右边墙上有种方法,326.N根据分步乘法计数原理不同挂法种数是4.要从甲、乙、丙3名工人中选出2名分别上白班和晚班,有多少种不同的选法?第一步:选1人上白班;第二步:选1人上晚班.有3种方法有2种方法N=3×2=6(种)5.从5人中选4人参加数、理、化学科竞赛,其中数学2人,理、化各1人,求共有多少种不同的选法?数学2人化学1人物理1人5种4种3种N=5×4×3=60(种)10.如图,该电路,从A到B共有多少条不同的线路可通电?AB解:从总体上看由A到B的通电线路可分三类,第一类,m1=3条第二类,m2=1条第三类,m3=2×2=4,条所以,根据分类原理,从A到B共有N=3+1+4=8条不同的线路可通电。在解题时有时既要分类又要分步。课堂小结相同点:回答的都是有关做一件事的不同方法总数的问题.分类计数原理与分步计数原理的异同:区别在于:分类计数原理针对的是“分类”问题,其中各种方法相互独立,用任何一种方法都可以做完这件事;分步计数原理针对的是“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成才算做完这件事.分类计数原理:针对的是“分类”问题。各类方法相互独立。分步计数原理:针对的是“分步”问题。每步相互依存。结束语两大原理妙无穷,茫茫数理此中求;万万千千说不尽,运用解题任驰骋。