《平行线的判定与性质的综合运用》教学课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

导入新课讲授新课当堂练习课堂小结平行线的性质第2课时平行线的判定与性质的综合运用如图,已知a//b,那么2与4有什么关系呢?为什么?b12ac4解:∵a//b(已知),∴1=2(两直线平行,同位角相等).∵1+4=180°(邻补角的性质),∴2+4=180°(等量代换).思考:类似地,已知两直线平行,能否得到同旁内角之间的数量关系?三、平行线的基本性质3性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.b12ac4∴∠2+∠4=180°(两直线平行,同旁内角互补)∵a∥b(已知)应用格式:总结归纳典型例题新知:两直线平行,同旁内角互补【例1】如图5-3-30,在四边形ABCD中,AB∥CD,∠D=()A.120°B.135°C.145°D.155°B1.(2018滨州)如图5-3-31,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°举一反三D2.如图5-3-29,直线l1∥l2,∠1=24°,则∠2+∠3=.204°【例2】如图5-3-32,AB∥CD,AD∥BC.请说明∠A=∠C.解:∵AB∥CD,∴∠A+∠D=180°.∵AD∥BC,∴∠C+∠D=180°.∴∠A=∠C.2.如图5-3-33,直线AB∥CD,直线MN分别交AB,CD于点E,F,EG平分∠BEF,交CD于点G,若∠EFG=72°,求∠MEG的度数.解:∵AB∥CD,∴∠MEB=∠EFG=72°,∠FEB+∠EFG=180°.∴∠FEB=108°.∵EG平分∠BEF,∴∠GEB=∠FEB=54°.∴∠MEG=∠GEB+∠MEB=54°+72°=126°.21例2如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?ABCD解:因为梯形上、下底互相平行,所以∠A与∠D互补,∠B与∠C互补.所以梯形的另外两个角分别是80°、65°.于是∠D=180°-∠A=180°-100°=80°∠C=180°-∠B=180°-115°=65°典例精析两直线平行同位角相等内错角相等同旁内角互补平行线的判定平行线的性质线的关系角的关系性质角的关系线的关系判定讨论:平行线三个性质的条件是什么?结论是什么?它与判定有什么区别?(分组讨论)四、平行线的判定与性质理由:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).平行线的判定与性质的综合运用一典例精析例1已知:如图,∠1=∠2.对∠3=∠4说明理由.1324BACD例2已知:如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.解:∵EF∥AD(已知),∴∠2=∠3又∵∠1=∠2∴∠1=∠3∴DG∥AB∴∠BAC+AGD=180°∴∠AGD=180°-BAC=180°-70°=110°.(两直线平行,同位角相等).(已知),(等量代换).(内错角相等,两直线平行).(两直线平行,同旁内角互补).方法归纳与平行线相关的问题一般都是平行线的判定与性质的综合应用,主要体现在以下两个方面:1.由角定角已知角的关系两直线平行确定其它角的关系2.由线定线已知两直线平行角的关系确定其它两直线平行判定性质判定性质1.如图所示,下列结论正确的有___________.(把所有正确结论的序号都选上).①若AB∥CD,则∠3=∠4;②若∠1=∠BEG,则EF∥GH;③若∠FGH+∠3=180°,则EF∥GH;④若AB∥CD,∠4=62°,EG平分∠BEF,则1=59°.练一练①③④2.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.解:∵∠1=∠2(已知),∠2=∠EHD(对顶角相等),∴∠1=∠EHD(等量代换),∴AB∥CD(同位角相等,两直线平行).∴∠B+∠D=180°(两直线平行,同旁内角互补).∵∠D=50°(已知),∴∠B=180°-50°=130°(等式的性质).例2已知:如图,AB//CD,∠A=100°,∠C=110°,求∠AEC的度数EABCD1F分析:过点E作EF//AB,则∠1+∠A=180°.由AB//CD,得EF//CD,则∠C+∠FEC=180°.由∠A=100°,∠C=110°,可求得∠1和∠FEC的度数,根据角的和差,可求得∠AEC的度数.解:过点E作EF//AB.∵AB//CD,EF//AB(已知),∴EF//CD(平行于同一直线的两直线平行).∴∠A+∠1=180o,∠C+∠FEC=180o(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知)∴∠1=180°-∠A=80°,∠FEC=180°-∠C=70°(等式的性质)∴∠AEC=∠1+∠FEC=80°+70°=150°.当堂练习1.下列推理正确的是()A.∵a//d,b//c,∴c//dB.∵a//c,b//d,∴c//dC.∵a//b,a//c,∴b//cD.∵a//b,c//d,∴a//cC2.直线a,b,c,d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()A.80°B.65°C.60°D.55°3.如图,BD⊥AB,BD⊥CD,则∠a的度数是()A.50°B.40°C.60°D.45°BA4.已知AB∥DE,试问∠B,∠E,∠BCE有什么关系.请完成填空:解:过点C作CF∥AB,则__________().又∵AB∥DE,AB∥CF,∴____________().∴∠E=∠____().∴∠B+∠E=∠1+∠2(),即∠B+∠E=∠BCE.CF∥DE平行于同一直线的两条直线平行2两直线平行,内错角相等∠B=∠1两直线平行,内错角相等ABCDE12F等式的性质5.已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.解:是.∵AD⊥BC,EG⊥BC(已知),∴∠4=∠5=90°(垂直的定义).∴AD∥EG(同位角相等,两直线平行).∴∠1=∠E(两直线平行,同位角相等),∠2=∠3(两直线平行,内错角相等).∵∠E=∠3(已知),∴∠1=∠2(等量代换),∴AD是∠BAC的平分线(角平分线的定义).6.如图,AB,CD,EF,MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,求∠1的度数.解:∵∠2=∠3=70°(已知),∴AB∥CD(内错角相等,两直线平行),∴∠BGP=∠GPC(两直线平行,内错角相等),∵∠GPC=80°(已知),∴∠BGP=80°(等量代换),∴∠BGM=180°-∠BGP=100°(平角的定义),∵GH平分∠MGB(已知),∴∠1=∠BGM=50°(角平分线的定义).127.拓展提升:已知:如图,AB//CD,试解决下列问题:(1)∠1+∠2=______;(2)∠1+∠2+∠3=_____;(3)∠1+∠2+∠3+∠4=_____;(4)试探究∠1+∠2+∠3+∠4+…+∠n=;180°360°ABCD12BAECD123BAECDF1243BAECDN12n540°180°×(n-1)课堂小结同位角相等内错角相等同旁内角互补两直线平行判定性质已知得到得到已知平行于同一条直线的两条直线平行.

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功