一、任务设计并制作一个简易智能电动车,其行驶路线示意图如下:二、要求1、基本要求(1)电动车从起跑线出发(车体不得超过起跑线),沿引导线到达B点。在“直道区”铺设的白纸下沿引导线埋有1~3块宽度为15cm、长度不等的薄铁片。电动车检测到薄铁片时需立即发出声光指示信息,并实时存储、显示在“直道区”检测到的薄铁片数目。(2)电动车到达B点以后进入“弯道区”,沿圆弧引导线到达C点(也可脱离圆弧引导线到达C点)。C点下埋有边长为15cm的正方形薄铁片,要求电动车到达C点检测到薄铁片后在C点处停车5秒,停车期间发出断续的声光信息。(3)电动车在光源的引导下,通过障碍区进入停车区并到达车库。电动车必须在两个障碍物之间通过且不得与其接触。(4)电动车完成上述任务后应立即停车,但全程行驶时间不能大于90秒,行驶时间达到90秒时必须立即自动停车。2、发挥部分(1)电动车在“直道区”行驶过程中,存储并显示每个薄铁片(中心线)至起跑线间的距离。(2)电动车进入停车区域后,能进一步准确驶入车库中,要求电动车的车身完全进入车库。(3)停车后,能准确显示电动车全程行驶时间。(4)其它。三、评分标准项目满分基本要求设计与总结报告:方案比较、设计与论证,理论分析与计算,电路图及有关设计文件,测试方法与仪器,测试数据及测试结果分析50实际完成情况50发挥部分完成第(1)项15完成第(2)项17完成第(3)项8其它10四、说明1、跑道上面铺设白纸,薄铁片置于纸下,铁片厚度为0.5~1.0mm。2、跑道边线宽度5cm,引导线宽度2cm,可以涂墨或粘黑色胶带。示意图中的虚线和尺寸标注线不要绘制在白纸上。3、障碍物1、2可由包有白纸的砖组成,其长、宽、高约为50cm12cm6cm,两个障碍物分别放置在障碍区两侧的任意位置。4、电动车允许用玩具车改装,但不能由人工遥控,其外围尺寸(含车体上附加装置)的限制为:长度≤35cm,宽度≤15cm。5、光源采用200W白炽灯,白炽灯泡底部距地面20cm,其位置如图所示。6、要求在电动车顶部明显标出电动车的中心点位置,即横向与纵向两条中心线的交点。一、方案选择与论证1、运动方式的选择通常的运动方法有轮式和履带驱动式两种,其选择依赖于路面状况、机械复杂性和控制复杂性。方案一:采用四轮——常见的汽车结构模式特点是一个马达作为动力,通过变速箱驱动后轮;另一个马达转动导向轮来决定行驶方向。优点是在直道行驶速度较快、方向和速度相互独立。缺点为转弯半径大、驱动轮易打滑、导向轮方向不易精确控制。方案二:采用履带式结构特点:两个电机分别驱动两条履带。优点是可以在原地转动;在不平的路面上性能稳定,牵引力大。缺点为速度慢、速度和方向不能单独控制摩擦力很大;能量损耗大,机械结构复杂。我们选择方案一2、电机驱动调速方案论证电机驱动调速方案的控制目标是实现电动机的正、反转及调速方案一:电阻网络或数字电位器调整分压采用电阻网络或数字电位器分压调整电动机的电压。但电动机工作电流很大;分压不仅会降低效率,而且实现很困难。方案二:采用继电器开关控制采用继电器控制电动机的开或关,通过开关的切换调整车速。优点是电路简单,缺点是响应时间慢、控制精度低、机械结构易损坏、寿命较短、可靠性低。方案三:H型PWM电路采用电子开关组成H型PWM电路。H型电路保证了简单的实现转速和方向的控制;用单片机控制电子开关工作的占空比,精确调整电动机转速。最终选择方案三。3、路面探测方案论证探测路面黑线的原理:光线照射到路面并反射,由于黑线和白线的反射系数不同,可根据接收到的反射光的强弱来判断传感器和黑线相对位置。方案一:采用可见光发光二极管和光敏二极管采用普通可见光发光管和光敏管组成的发射-接收电路。其缺点在于易受到环境光源的影响。即便提高发光管亮度也难以抵抗外界光的干扰。方案二:采用反射式红外发射-接收器采用反射式红外发射-接收器。直接用直流电压对发射管进行供电,其优点是实现简单,对环境光源的抗干扰能力强,在要求不高时可以使用。方案三:采用脉冲调制的红外发射-接收器在方案二的基础上采用脉冲调制发射。由于环境光干扰主要是直流分量,因此如果采用带有特定交流分量的调制信号,则可在接收端采用相应的手段来大幅度减少外界干扰。缺点是实现复杂﹑成本高。根据本题目中对探测地面的要求,由于传感器可以在车体的下部,发射、接收距地面都很近,外界光对其的干扰都很小。在基本不影响效果的前提下,为了简便起见,我们选用了方案二。4、障碍物探测模块方案一:超声波探测采用超声波器件。超声波波瓣较宽,一个发生器就可以监视较宽的范围。其优点为抗干扰能力强,不受物体表面颜色的影响。缺点为实现电路复杂,且用通常的测量方法在较近距离上有盲区。方案二:光电式探测采用光电式发射、检测模块。由于单个发射器的照射范围不能太小,因此不使用激光管。用波瓣较宽的脉冲调制型红外发射管和接收器。其优点是电路实现简单,抗干扰性较强。由于题目中已知障碍物外表为白色,有利于红外线的反射。同时从电路实现的难易程度上考虑,我们最终选择了方案一。5、寻光定向模块题目条件是在终点线后放置200W白炽灯用以指向,因此采用普通光敏三极管进行检测。方案一:车转式安装采用固定方向安装方式。将两个光敏三极管固定在车头的左右两边指向前方,当车头对准光源时,两传感器输出平衡;当车的方向不准时,通过两传感器输出的差别控制车原地转向来寻找光源。方案二:模拟雷达扫描用装在车底盘上的步进电机带动圆盘左右扫描,装在圆盘上的光敏传感器通过扫描,可以准确定位光源。我们采用了方案一。6、车轮检速及路程计算模块方案一:磁感应式采用霍尔元器件(霍尔元器件应用霍尔效应,输出量与磁场的大小有关)并在车轮上安装磁片,利用位置固定的开关型霍尔元器件来检测车轮的转动,通过单位时间内的脉冲数进行车速测量。方案二:光反射式采用反射式红外器件。在车轮轮辐面板上均匀画出黑底白线或白底黑线,通过正对线条的反射式红外器件,产生脉冲。通过对脉冲的计数测速。方案三:光对射式采用对射式红外传感器。在轮辐面板上均匀刻出孔,在轮子两侧固定相对的红外发射、接收器件。在过孔处接收器可以接收到信号。从而轮子转动时可以产生连续脉冲信号,通过对脉冲的计数进行车速测量。选择了方二。7、供电电源选择空8、方案论证总结综上所述,本设计方案如图1所示。二、硬件的设计与实现1、电动机PWM驱动模块的电路设计与实现具体电路如图2所示。本电路采用的是基于PWM原理的H型驱动电路。采用H桥电路可以增加驱动能力,同时保证了完整的电流回路。图2H型驱动模块的设计当为高电平,为低电平时,、管导通,、管截止,电动机正转。当为低电平,为高电平时,、管截止,、管导通,电动机反转。电机工作状态切换时线圈会产生反向电流,通过四个保护二极管D1、D2、D3、D4接入回路,防止电子开关被反向击穿。采用PWM方法调整马达的速度,首先应确定合理的脉冲频率。脉冲宽度一定时,频率对电机运行的平稳性有较大影响,脉冲频率高马达运行的连续性好,但带负载能力差;脉冲频率低则反之。经试验发现,脉冲频率在50Hz以上,电机转动平稳,但智能车行驶时,由于摩擦力使电机转速降低,甚至停转。当脉冲频率在10Hz以下时,电机转动有明显的跳动现象,经反复试验,本车在脉冲频率为15~20Hz时控制效果最佳。为方便测量及控制,在实际中我们采用了20Hz的脉冲。脉宽调速实质上是调节加在电机两端的平均功率,其表达式为:式中P为电机两端的平均功率;为电机全速运转的功率;K为脉宽。当K=1时,相当于加入直流电压,这时电机全速运转,;当K=0时,相当于电机两端不加电压,电机靠惯性运转。当电机稳定开动后,有(f为摩擦力)则所以,由上式可知智能车的速度与脉宽成正比。由上述分析,、这对控制电压采用了20Hz的周期信号控制,通过对其占空比的调整,对车速进行调节。同时,可以通过、的切换来控制电动机的正转与反转。在实际调试中,我们发现由于桥式电路中四个三极管的参数不一致,使控制难度加大,因此我们用专用的电机驱动管L298构成。图3L298内部电路使用一片L298便可完成对两路电机的控制。图4用L298实现双路电机驱动驱动信号由单片机的P1.1~P1.4口输出,同时使用一片74HC08驱动LED完成行驶状态指示。在工业控制系统中,单片机总要对控制对象实现操作,因此,在这样的系统中,总要有后向通道。后向通道是计算机实现控制运算处理后,对控制对象的输出通道接口。根据单片机的输出和控制对象实现控制信号的要求,后向通道具有以下特点:(1)小信号输出、大功率控制。根据目前单片机输出功率的限制,不能输出控制对象所要求的功率信号。(2)是一个输出通道。输出伺服驱动系统控制信号,而伺服驱动系统中的状态反馈信号通常是作为检测信号输入前向通道。(3)接近控制对象,环境恶劣。控制对象多为大功率伺服驱动机构,电磁、机械干扰较为严重。但后向通道是一个输出通道,而且输出电平较高,不易受到直接损害。但这些干扰易从系统的前向通道窜入。单片机在完成控制处理后,总是以数字信号通过I/O口或数据总线送给控制对象。这些数字信号形态主要有开关量、二进制数字量和频率量,可直接用于开关量、数字量系统及频率调制系统,但对于一些模拟量控制系统,则应通过数/模转换成模拟量控制信号。根据单片机输出信号形态及控制对象要求,后向通道应解决:(1)功率驱动。将单片机输出信号进行功率放大,以满足伺服驱动的功率要求。(2)干扰防治。主要防治伺服驱动系统通过信号通道﹑电源以及空间电磁场对计算机系统的干扰。通常采用信号隔离﹑电源隔离和对功率开关实现过零切换等方法进行干扰防治。(3)数/模转换。对于二进制输出的数字量采用D/A变换器;对于频率量输出则可以采用本设计调速采用PWM调速[5]:为顺利实现电动小汽车的左转和右转,本设计采用了可逆PWM变换器。可逆PWM变换器主电路的结构式有H型、T型等类型。我们在设计中采用了常用的双极式H型变换器,它是由4个三极电力晶体管和4个续流二极管组成的桥式电路。图3.4为双极式H型可逆PWM变换器的电路原理图。4个电力晶体管的基极驱动电压分为两组。VT1和VT4同时导通和关断,其驱动电路中Ub1=Ub4;VT2和VT3同时动作,其驱动电压Ub2=Ub3=-Ub1。双极式PWM变换器的优点如下:(1)电流一定连续;(2)可使电动机在四象限中运行;(3)电机停止时有微振电流,能消除静摩擦死区;(4)低速时,每个晶体管的驱动脉冲仍较宽,有利于保证晶体管可靠导通;(5)低速平稳性好,调速范围可达20000左右。1、脉宽调制原理:脉宽调制器本身是一个由运算放大器和几个输入信号组成的电压比较器。运算放图3.4双极式H型可逆PWM变换器电路原理图大器工作在开换状态,稍微有一点输入信号就可使其输出电压达到饱和值,当输入电压极性改变时,输出电压就在正、负饱和值之间变化,这样就完成了把连续电压变成脉冲电压的转换作用。加在运算放大器反相输入端上的有三个输入信号。一个输入信号是锯齿波调制信号,另一个是控制电压,其极性大小可随时改变,与锯齿波调制信号相减,从而在运算放大器的输出端得到周期不变、脉宽可变的调制输出电压。只要改变控制电压的极性,也就改变了PWM变换器输出平均电压的极性,因而改变了电动机的转向.改变控制电压的大小,则调节了输出脉冲电压的宽度,从而调节电动机的转速.只要锯齿波的线性度足够好,输出脉冲的宽度是和控制电压的大小成正比的.q48050q28050q18550q38550r110kr210kr4r3M12A74LS0612A74LS0612A74LS0612A74LS061K1KVCCD1D3D2D410K10K2、路面黑线探测模块的设计与实现为了检测路面黑线,在车底的前部安装了三组反射式红外传感器。其中左右两旁各有一组传感器,由三个传感器组成“品”字形排列,中轴线上为一个传感器。因为若采用中部的一组传感器的接法,有可能出现当驶出拐角时将无法探测到转弯方向。若有两旁的传感器,则可以提前探测到哪一边有轨迹,方便程序的判断。采用传感器组的目的是防止地面上个别点