导入新课讲授新课当堂练习课堂小结19.2.3一次函数与方程、不等式第十九章一次函数情境引入学习目标1.认识一次函数与一元(二元)一次方程(组)、一元一次不等式之间的联系.(重点、难点)2.会用函数观点解释方程和不等式及其解(解集)的意义.导入新课观察与思考今天数学王国搞了个家庭Party,各个成员按照自己所在的集合就坐,这时来了“x+y=5”.二元一次方程一次函数x+y=5到我这里来到我这里来这是怎么回事?x+y=5应该坐在哪里呢?讲授新课一次函数与一元一次方程一32121-2Oxy-1-13问题1下面三个方程有什么共同特点?你能从函数的角度对解这三个方程进行解释吗?(1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.用函数的观点看:解一元一次方程ax+b=k就是求当函数(y=ax+b)值为k时对应的自变量的值.2x+1=3的解y=2x+12x+1=0的解2x+1=-1的解合作探究1.直线y=2x+20与x轴交点坐标为(____,_____),这说明方程2x+20=0的解是x=_____.-100-10练一练2.若方程kx+2=0的解是x=5,则直线y=kx+2与x轴交点坐标为(____,_____).50求一元一次方程kx+b=0的解.一次函数与一元一次方程的关系一次函数y=kx+b中,y=0时x的值.从“函数值”看求一元一次方程kx+b=0的解.求直线y=kx+b与x轴交点的横坐标.从“函数图象”看归纳总结例1一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?(从方程、函数解析式及图象三个不同方面进行解答)解法1:设再过x秒它的速度为17米/秒,由题意得2x+5=17解得x=6答:再过6秒它的速度为17米/秒.典例精析解法2:速度y(单位:米/秒)是时间x(单位:秒)的函数y=2x+5由右图可以看出当y=17时,x=6.y=2x+5xyO6175-2.5解法3:速度y(单位:米/秒)是时间x(单位:秒)的函数y=2x+5由2x+5=17得2x-12=0由右图看出直线y=2x-12与x轴的交点为(6,0),得x=6.Oxy6-12y=2x-12一次函数与一元一次不等式二问题2下面三个不等式有什么共同特点?你能从函数的角度对解这三个不等式进行解释吗?能把你得到的结论推广到一般情形吗?(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.不等式ax+b>c的解集就是使函数y=ax+b的函数值大于c的对应的自变量取值范围;不等式ax+b<c的解集就是使函数y=ax+b的函数值小于c的对应的自变量取值范围.32121-2Oxy-1-13y=3x+2y=2y=0y=-1(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.例2画出函数y=-3x+6的图象,结合图象求:(1)不等式-3x+60和-3x+60的解集;(2)当x取何值时,y3?解:作出函数y=-3x+6的图象,如图所示,图象与x轴交于点B(2,0).xOB(2,0)A(0,6)y解:(1)由图象可知,不等式-3x+60的解集是图象位于x轴上方的x的取值范围,即x2;不等式-3x+60的解集是图象位于x轴下方的x的取值范围,即x2;xOB(2,0)A(0,6)31(1,3)y(2)由图象可知,当x1时,y3.(1)不等式-3x+60和-3x+60的解集;(2)当x取何值时,y3?如图,已知直线y=kx+b与x轴交于点(-4,0),则当y0时,x的取值范围是()A.x-4B.x0C.x-4D.x0做一做C求kx+b>0(或0)(k≠0)的解集y=kx+b的值大于(或小于)0时,x的取值范围从“函数值”看求kx+b>0(或0)(k≠0)的解集确定直线y=kx+b在x轴上方(或下方)的图象所对应的x取值范围从“函数图象”看一次函数与一元一次不等式的关系归纳总结一次函数与二元一次方程组三问题31号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升.两个气球都上升了1h.(1)请用解析式分别表示两个气球所在位置的海拔y(m)与气球上升时间x(min)的函数关系.h1h2气球1海拔高度:y=x+5;气球2海拔高度:y=0.5x+15.思考1:一次函数与二元一次方程有什么关系?一次函数二元一次方程一次函数y=0.5x+15二元一次方程y-0.5x=15二元一次方程y=0.5x+15用方程观点看用函数观点看从式子(数)角度看:由函数图象的定义可知:直线y=0.5x+15上的每个点的坐标(x,y)都能使等式y=0.5x+15成立,即直线y=0.5x+15上的每个点的坐标都是二元一次方程y=0.5x+15的解思考2:从形的角度看,一次函数与二元一次方程有什么关系?15105-5510Oxyy=0.5x+15从数的角度看:就是求自变量为何值时,两个一次函数y=x+5,y=0.5x+15的函数值相等,并求出函数值.解方程组y=x+5y=0.5x+15h1h2(2)什么时刻,1号气球的高度赶上2号气球的高度?这时的高度是多少?请从数和形两方面分别加以研究.气球1海拔高度:y=x+5气球2海拔高度:y=0.5x+15二元一次方程组的解就是相应的两个一次函数图象的交点坐标.A(20,25)302520151051020y=x+5y=0.5x+15155Oxy从形的角度看,二元一次方程组与一次函数有什么关系?归纳总结一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个一次函数,也对应一条直线.方程组的解对应两条直线交点的坐标.观察函数图象,直接回答下列问题:(1)在什么时候,1号气球比2号气球高?(2)在什么时候,2号气球比1号气球高?气球1海拔高度:y=x+5气球2海拔高度:y=0.5x+15(1)20min后,1号气球比2号气球高.(2)0~20min时,1号气球比2号气球高.Oyx例2如图,求直线l1与l2的交点坐标.分析:由函数图象可以求直线l1与l2的解析式,进而通过方程组求出交点坐标.解方程组y=2x+2,y=-x+3,解:因为直线l1过点(-1,0),(0,2),用待定系数法可求得直线l1的解析式为y=2x+2.同理可求得直线l2的解析式为y=-x+3.得x=y=13,83,即直线l1与l2的交点坐标为18,.33Oyx,,yaxbycxd如图,一次函数y=ax+b与y=cx+d的图象交于点P,则方程组的解是多少?解:此方程组的解是21,xy.123-1-2-3-1-3-4-52O-214-6xy练一练Py=ax+by=cx+d课堂小结一次函数与方程、不等式解一元一次方程对应一次函数的值为0时,求相应的自变量的值,即一次函数与x轴交点的横坐标.解一元一次不等式对应一次函数的函数值大(小)于0时,求自变量的取值范围,即在x轴上方(或下方)的图象所对应的x取值范围.解二元一次方程组求对应两条直线交点的坐标.当堂练习1.一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为.−3y=kx+3Oyx3x=-32.若方程组的解为则一次函数y=2x+1与y=3x-1的图象交点坐标为______.21xy-=-,31xy,-=,2x,5y(2,5)3.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2如图,他解的这个方程组是()D点拨:由图象知l1、l2的x的系数都应为负数,排除A、C.又l1、l2的交点为(2,-2),代入验证可知只有D符合.A.22112yxyxB.221yxyxC.38132yxyxD.22112yxyx4.一次函数y1=4x+5与y2=3x+10的图象如图所示,则4x+53x+10的解集是()A.x5B.x5C.x-5D.x2512B