全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。2.性质:(1)全等三角形的对应边相等、对应角相等。理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。(2)全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3.判定方法:边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4.证明两个三角形全等的基本思路:方法指引证明两个三角形全等的基本思路:(1):已知两边----找第三边(SSS)找夹角(SAS)(2):已知一边一角---已知一边和它的邻角找是否有直角(HL)已知一边和它的对角找这边的另一个邻角(ASA)找这个角的另一个边(SAS)找这边的对角(AAS)找一角(AAS)已知角是直角,找一边(HL)(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS)练习5.应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等例1:已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.分析:已知条件中具备AC=CE,要证明两个三角形全等,需要推证其它的对应边、对应角相等,而由AC∥DE得∠E=∠ACB,∠D=∠ACD,又因为∠ACD=∠B,所以∠D=∠B.得到两个三角形全等的条件。解答:证明:∵AC∥DE,∴∠ACD=∠D,∠BCA=∠E又∵∠ACD=∠B,∴∠B=∠D又∵AC=CE,∴△ABC≌△CDE点评:此题主要考察了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS,SAS,ASA,AAS,选用哪一种方法,取决于题目中的已知条件。练习1:如图,已知AFEB,,,四点共线,ACCE⊥,BDDF⊥,AEBF,ACBD.求证:ACFBDE△≌△.练习2:如图,给出五个等量关系:①ADBC、②ACBD、③CEDE、④DC、⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的命题(只需写出一种情况),并加以证明.已知:求证:AFDEBCABCED课后作业:1.如图,已知12,ABCDCB,ACDB.求证:ABCDCB△≌△.2.将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下右图的形式,使点B,F,C,D在同一条直线上.(1)求证:ABED⊥;(2)若PBBC,请找出图中与此条件有关的一对..全等三角形,并给予证明.2ADCB1AEPMBFCDNACBDFE