古典概型练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1古典概型练习题2.有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学在同一个兴趣小组的概率为()A.31B.21C.32D.433.“序数”指每个数字比其左边的数字大的自然数(如1258),在两位的“序数”中任取一个数比56大的概率是()A.14B.32C.43D.544.如图,一面旗帜由,,C三块区域构成,这三块区域必须涂上不同的颜色,现有红、黄、蓝、黑四种颜色可供选择,则区域是红色的概率是()123A.13B.14C.12D.345.口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回的连续抽取2次,每次从中任意地取出1个球,则两次取出的球颜色不同的概率是()A.29B.13C.23D.896.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队则需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为()A.34B.35C.23D.127.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于9的概率为A.31B.185C.92D.36118.将一根绳子对折,然后用剪刀在对折过的绳子上任意一处剪断,则得到的三条绳子的长度可以作为三角形的三边形的概率为()A.16B.14C.13D.129.把一枚硬币连续抛掷两次,事件A“第一次出现正面”,事件B“第二次出现正面”,则|PBA()A.12B.14C.16D.1810.4张卡片上分别有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.13B.12C.23D.3411.已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为()A.1B.116C.14D.1212.据人口普查统计,育龄妇女生男女是等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率是()2A.12B.13C.14D.1513.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率是90%,则甲、乙两人下和棋的概率是()A.60%B.30%C.10%D.50%14.利用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的概率是()A.12B.13C.16D.1415.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.25B.925C.825D.1516.同时抛投两枚质地均匀的硬币,则两枚硬币均正面向上的概率为()A.B.C.D.117.某袋中有9个大小相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为()A.B.C.D.18.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.19.同时掷3枚硬币,至少有1枚正面向上的概率是A.87B.85C.83D.81填空题20.某学校高三年级共有11个班,其中14班为文科班,511班是理科班,现从该校文科班和理科班中各选一个班的学生参加学校组织的一项公益活动,则所选两个班的序号之积为3的倍数的概率为__________.21.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为.22.投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1、2、3、4、5、6)一次,则两颗骰子向上点数之积等于12的概率为_____.23.一个袋中有12个除颜色外完全相同的球,2个红球,5个绿球,5个黄球,从中任取一球,不放回后再取一球,则第一次取出红球时第二次取出黄球的概率为.24.已知盒中有大小相同的3个红球和2个白球,若每次不放回的从盒中取一个球,一直到取出所有白球时停止抽取,则停止抽取时恰好取到两个红球的概率为________.25.某人外出参加活动,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.1,0.4,0.2,他不乘..轮船去的概率是_____________.26.甲、乙、丙三人将独立参加某项体育达标测试,根据平时训练的经验,甲、乙、丙三人能达标的达标的概率分别为323,,435,则三人中有人达标但没有全部达标的概率为.27.甲,乙两人独立地破译1个密码,他们能破译密码的概率分别是和,则这个密码能被破译的概率为.28.为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,则选择的2天恰好为连续2天的概率是.29.有一道数学难题,在半小时内甲能解决的概率是12,乙能解决的概率为13,两人试图独立地在半小时解决,则难题半小时内被解决的概率为________.330.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.31.从3台甲型彩电和2台乙型彩电中任取3台,其中两种品牌的彩电齐全的概率是________.32.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.33.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是.4参考答案1.C【解析】试题分析:在第一次取到白球的条件下,盒子中还有3个红球和1个白球,故第二次取到红球的概率为43,故选C.考点:条件概率.2.A【解析】试题分析:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到3193P考点:古典概型及其概率计算公式3.A【解析】试题分析:两位“序数”共有8765432136个,其中比56大的“序数”有33219个,所以在两位的“序数”中任取一个数比56大的概率是91364P,故选A.考点:古典概型.4.B【解析】试题分析:三块区域涂色的所有可能有(红、黄、蓝)、(红、黄、黑)、(红、蓝、黄)、(红、蓝、黑)、(红、黑、黄)、(红、黑、蓝)、(黄、红、蓝)、、(黄、红、黑)、(黄、蓝、红)、(黄、蓝、黑)、(黄、黑、红)、(黄、黑、蓝)、(蓝、红、黄)、(蓝、红、黑)、(蓝、黄、红)、(蓝、黄、黑)、(蓝、黑、红)、(蓝、黑、黄)、(黑、红、黄)、(黑、红、蓝)、(黑、蓝、红)、(黑、蓝、黄)、(黑、黄、红)、(黑、黄、蓝),共24种,其中区域是红色的有6种,故所求概率61244P,故选B.考点:古典概型.5.C【解析】试题分析:由题意,知基本事件总数11339nCC,能两次取出的球颜色不同包含的基本事件个数11326mCC,所以能两次取出的球颜色不同的概率为6293mPn,故选C.考点:古典概型.6.A【解析】试题分析:若只进行一局比赛甲队获得冠军,则概率为112P,若进行两局比赛甲队获得冠军,则概率为2111224P,以上两事件互斥,根据互斥事件概率加法公式,甲队获得冠军的概率为1234PPP。考点:互斥事件概率。7.B【解析】5试题分析:一共3666种情况,其中满足条件的有5,4,4,5,6,3,3,6,5,5,6,4,4,6,6,5,5,6,6,6共10种情况,所以概率1853610P,故选B.考点:古典概型8.D【解析】试题分析:三边要能成为三角形,那么两边之和大于第三边,所以应在对折过的绳子的中点处和对折点之间的任意位置剪短,所以能构成三角形的概率21P,故选D.考点:几何概型9.A【解析】试题分析:连续抛掷两次硬币的结果有(正正),(正反),(反反),(反正),共四种.其中第一次是正面的情况有(正正),(正反)两种;在此前提下,第二次是正面的只有(正正)一种情况,故|PBA21,应选A.考点:条件事件的概率公式及运用.【易错点晴】条件概率是在事件A发生的前提下,事件B发生的概率.求解的方法有两种:其一是定义法.这种方法是先将所有事件都列举出来,然后依据条件考虑在事件A发生的前提下所有可能的情况,再找出事件B发生的所有情形,最后算出其概率.方法二是运用公式)()()|(APABPABP求其概率.本题在求解时运用了方法一进行求解的.10.C【解析】试题分析:从这4张卡片中随机抽取2张,共有6种不同取法,其中取出的2张卡片上的数字之和为奇数有4种不同取法,故所求概率为42=63,选C.考点:古典概型概率【方法点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.11.C【解析】试题分析:甲、乙两人选择卡片的所有基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个基本事件,选择同一张卡片的有4个,所以他们选择同一张卡片的概率为41164P,故选C.考点:古典概型.12.C【解析】试题分析:所有基本事件有:男),(女,女),(男,女),(女,男,男)(,两胎均是女孩的基本事件只6有(女,女),两胎均是女孩的概率41p,故选C.考点:古典概型.13.D【解析】试题分析:甲、乙两人下和棋的概率%50%40%90P,故选D.考点:互斥事件.14.A【解析】试题分析:每个个体被抽到的概率是2163Nnp,故选A.考点:简单随机抽样.15.A【解析】试题分析:从甲乙等5名学生中随机选出2人,基本事件总数为2510nC,甲被选中包含的基本事件的个数11144mCC,所以甲被选中的概率为25mpn,故选A.考点:古典概型及其概率的计算.16.A【解析】解:由题意知本题是一个等可能事件的概率,同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的有一种,∴两枚硬币都是正面朝上的概率,故选:A.【点评】本题考查了用列举法求概率的方法:先利用列举所有等可能的结果n,然后找出某事件出现的结果数m,最后计算P=.属于基础题.17.C【解析】解:袋中有9个大小相同的球,从中任意取出1个,共有9种取法,4个白球,现从中任意取出1个,取出的球恰好是白球,共有4种取法,故取出的球恰好是白球的概率为.故选:C.【点评】本题考查等可能事件的概率,考查学生的计算能力,确定基本事件的概率.18.B【解析】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从4个不同的数中随机的抽2个,共有C42=6种结果,满足条件的事件是取出的数之差的绝对值等于2,有2种结果,分别是(1,3),(2,4),∴要求的概率是=.故选B.【点评】本题考查等可能事件的概率,是一个基础题,本题解题的关键是事件数是一个组合数,若都按照排列数来理解也可以做出正确的结果.719.A【解析】试题分析:由题意知本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次共有328种结果,满足条件的事件的对立事件是三枚硬币都是正面,有1种结果,∴至少一次正面向上的概率是17188考点:等可能事件的概率;互斥事件与对立事件20.1328【解析】试题分析:某学校高三年级共有11个班,其中14班为文科班,511班是理科班,现从该校文科班和理科班中各选一个班的学生参加学校组织的一项公益活动,共有47=28种,所选两个班的序号之积为3的倍数的,从理科班可抽3的倍数班6,9,文科班有4种取法,共有8种取法时;文科班取3班时,理科班有7种选法;除去重复的两种,总共有13种取法,所以所选两个班的序号之积为3的倍数的概率1328.考点:古典概型概率公式的应用.【方法点睛】(1)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功