问题解决(例7)圆柱与圆锥绿色圃中小学教育网单位换算。36立方分米=()立方米=()立方厘米1.2平方米=()平方分米250平方厘米=()平方分米34000ml=()L=()立方米2.4平方米=()平方米()平方分米6立方米60立方分米=()立方米=()立方分米1、求出下列圆柱体积。(1)圆柱底面积12.5平方分米,高8分米。(2)圆柱底面半径2分米,高5分米。(3)圆柱直径1分米,高4分米。(4)圆柱底面周长31.4厘米,高20厘米。2、求下面圆柱的(1)底面积:(2)侧面积:(3)表面积:(4)体积:d=10cmh=12cm1.3350200150(mL)150mL150cm;。这个西红柿的体积是多少?结论:V物体=V上升部分;V物体=V下降部分;V物体=V溢出部分。3、用排水法求不规则物体体积三、巩固练习,强化提高2.388788644838464(cm)。方法1:方法2:3887664164(cm)()。3、用排水法求不规则物体体积3.3(2412)34(cm)小球的体积:;31248(cm)大球的体积:。绿色圃中小学教育网绿色圃中小学教育网、用排水法求不规则物体体积一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?一、探索新知请你认真阅读,理解一下这道题说的是什么意思?请你仔细想一想,怎么能计算出瓶子的容积呢?18cm7cm绿色圃中小学教育网一、探索新知一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?18cm7cm瓶子里水的体积倒置后,体积没变。水的体积加上18cm高圆柱的体积就是瓶子的容积。也就是把瓶子的容积转化成两个圆柱的体积。绿色圃中小学教育网答:这个瓶子的容积是1256mL。瓶子的容积:=3.14×(8÷2)×7+3.14×(8÷2)×18=3.14×16×(7+18)=3.14×16×25=1256(cm³)=1256(mL)22一、探索新知一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?18cm7cm绿色圃中小学教育网的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?18cm7cm让我们回顾反思一下吧!我们利用了体积不变的特性,把不规则图形转化成规则图形来计算。在五年级计算梨的体积也是用了转化的方法。一、探索新知绿色圃中小学教育网请你仔细想一想,小明喝了的水的体积该怎么计算呢?无水部分高为10cm圆柱的体积就是小明喝了的水的体积。一瓶装满的矿泉水,小明喝了一些,把瓶盖拧紧后倒置放平,无水部分高10cm,内径是6cm。小明喝了多少水?(一)做一做答:小明喝了282.6mL的水。3.14×(6÷2)×10=3.14×9×10=28.26×10=282.6(cm³)=282.6(mL)210cm二、知识应用绿色圃中小学教育网,把一块完全浸泡在这个容器的水中的铁块取出后,水面下降2cm。这块铁块的体积是多少?3.14×(10÷2)×2=3.14×5²×2=3.14×25×2=78.5×2=157(cm³)2答:这块铁皮的体积是157cm³。二、知识应用请你想一想,如何求这块铁块的体积?绿色圃中小学教育网请你想一想,以长为轴旋转,得到的圆柱是什么样子?请你想一想,以宽为轴旋转,得到的圆柱又是什么样子?4.右面这个长方形的长是20cm,宽是10cm。分别以长和宽为轴旋转一周,得到两个圆柱体。它们的体积各是多少?3.14×10²×20=3.14×100×20=314×20=6280(cm³)答:以长为轴旋转一周,得到的圆柱的体积是6280cm³。3.14×20²×10=3.14×400×10=1256×10=12560(cm³)答:以宽为轴旋转一周,得到的圆柱的体积是12560cm³。二、知识应用20cm10cm绿色圃中小学教育网(图中单位:dm)。用这些图形分别卷成圆柱,哪个圆柱的体积最小?哪个圆柱的体积最大?你有什么发现?图1图2图3图4设π=3图1半径:18÷3÷2=3(dm)图2半径:12÷3÷2=2(dm)图3半径:9÷3÷2=1.5(dm)图4半径:6÷3÷2=1(dm)体积:3×3²×2=54(dm³)体积:3×2²×3=36(dm³)体积:3×1.5²×4=27(dm³)体积:3×1²×6=18(dm³)答:图4圆柱的体积最小,图1圆柱的体积最大。1812962346二、知识应用我发现,上面4个图形。当以长作为圆柱底面周长时,长方形的长和宽的长度越接近,所卷成的圆柱的体积越小。请你想一想,上面4个图形当以长为圆柱底面周长时,会卷成什么样的圆柱?请你动手试一试。绿色圃中小学教育网我发现,上面4个图形。当以宽作为圆柱底面周长时,长方形的长和宽的长度越接近,所卷成的圆柱的体积越大。请你想一想,上面4个图形当以宽为圆柱底面周长时,会卷成什么样的圆柱?请你动手试一试。图1半径:2÷3÷2≈0.3(dm)图2半径:3÷3÷2=0.5(dm)图3半径:4÷3÷2≈0.7(dm)图4半径:6÷3÷2=1(dm)体积:3×0.3²×18=4.86(dm³)体积:3×0.5²×12=9(dm³)体积:3×0.7²×9=13.23(dm³)体积:3×1²×6=18(dm³)答:图1圆柱的体积最小,图4圆柱的体积最大。设π=3二、知识应用5.下面4个图形的面积都是36dm2(图中单位:dm)。用这些图形分别卷成圆柱,哪个圆柱的体积最小?哪个圆柱的体积最大?你有什么发现?绿色圃中小学教育网