【李凤岩数学笔记】数列的周期性

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数列的周期性作者李凤岩一般地,若数列na满足:存在一个最小的正整数T,使得nTnaa对一切正整数n都成立,则数列na称为周期数列,其中T叫做数列na的周期.判断一个数列是否具有周期性或求一个数列的周期,主要方法是通过递推公式求出数列的前几项观察得到或由递推公式发现规律.运用数列的递推公式求数列中的项时,如果每隔一定的项,数列的值完全一样,或要求的项其序号较大,且通项公式不易求出,猜想该数列很可能是周期数列.题型一利用数列的周期性求特定项【例】已知数列na满足10a,13()31nnnaanNa,则20a等于().A.0B.3C.3D.32答案:B.解:由10a和1331nnnaaa,得20331a,333313a,40a,53a,,可知na是以3为周期的数列,所以2023aa,选B.【例】已知数列na满足11a,22a,12(3)nnnaannNa,,则2015a等于().A.12B.1C.2D.20152答案:A.解:由2312aaa,3421aaa,45312aaa,56412aaa,6751aaa,786aaa,.可知数列na是以6为周期的周期数列,故201533565512aaa,选A.【例】已知在数列na中,13a,26a,且21nnnaaa,则2012a().A.3B.3C.6D.6答案:C.解:由题意知:3213aaa,4323aaa,5436aaa,6543aaa,7653aaa,8766aaa,9873aaa,10983aaa,.故na是周期为6的数列,201226aa,选C.【例】已知数列na()nN满足13a,27a,且2na总等于1nnaa的个位数字,则2012a的值为().A.1B.3C.7D.9答案:C.解:由13a,27a,得31a,47a,57a,69a,73a,87a,,通过观察,可知数列na是以6为周期的周期数列.201227aa,选C.【例】已知数列na中,145a,1120212112nnnnnaaaaa,,,则2012a等于().A.45B.35C.25D.15答案:C.解:当145a时,2432155a;当235a时,3312155a;当315a时,412255a;当425a时,524255a.易知数列na的周期为4,所以2012425aa,选C.【例】数列na满足111nnaa,82a,则1a__________.答案:12.解:将82a代入111nnaa,可求得712a;再将712a代入111nnaa,可求得61a;再将61a代入111nnaa,可求得52a;由此可以推出数列na是周期为3的周期数列,所以1712aa.【例】设函数()fx定义如下表,数列nx满足05x,且对任意的自然数均有1()nnxfx,则2010x__________.x12345()fx41352答案:1.解:由题可知,10()(5)2xfxf,21()(2)1xfxf,32()(1)4xfxf,430()(4)5xfxfx,从而数列nx是周期为4的数列,于是20105024221xxx.【例】已知数列na满足:11a,22a,12()nnnaaanN,求2011a.解:12nnnaaa,210nnnaaa.①则3210nnnaaa.②①②得30nnaa,即3nnaa.③则6(3)33()nnnnnaaaaa.④由④可知,数列na是以6为周期的数列,故20116335111aaa.题型二利用数列的周期性求和【例】已知数列na满足11(2)nnnaaan,11a,23a,记12nnSaaa,则下列结论正确的是().A.1001a,1005SB.1003a,1005SC.1003a,1002SD.1001a,1002S答案:A.解:由211nnnnaaaa,得3nnaa,63nnnaaa.数列na是以6为周期的数列.123456142536()+()+()0aaaaaaaaaaaa,10012612342322116()()()2315Saaaaaaaaaaaa,选A.【例】已知数列nx满足3nnxx,21()nnnxxxnN,若11x,2xa(1a且0)a,则数列nx的前2012项的和2012S为().A.669B.670C.1338D.1342答案:D.解:由11x,2xa,得32111xxxaa,4112xaaa.41xx,121a,解得1a.此数列为1,1,0,1,1,0,,其周期为3.201267032670221342SS,选D.【例】数列na的通项公式cos2nnan,其前n项和为nS,则2012S等于().A.1006B.2012C.502D.0答案:A.解:cos2ny的周期242T.1520090aaa,262010503(22010)26201050310062aaa,3720110aaa,482012503(42012)48201250310082aaa,20120503100605031008503(10061008)1006S,选A.【例】数列na的通项公式cos12nnan,则1232015aaaa__________.答案:1007.解:由题可知,11a,21a,31a,45a,51a,65a,71a,89a,.通过观察可知,12345678414243446nnnnaaaaaaaaaaaa,20131a,20142013a,20151a.故12320151234201320142015503()aaaaaaaaaaa50361201311007.【例】已知数列na满足11a,22a,对于任意的正整数n都有11nnaa,1212nnnnnnaaaaaa,则100S__________.答案:199.解:由11a,22a,1212nnnnnnaaaaaa,得33a,41a,52a,,数列na是以3为周期的周期数列,且1236aaa.1001231()336331199Saaaa.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功