1.试述喹诺酮类药物的构效关系答:1.3位羧基和4位羰基是活性必须基团,如果被其他取代基取代则活性消失。2.1位取代基对活性影响大,若为脂肪烃基取代,以乙基或乙基体积相近的取代基为好;若为脂环烃基取代,以环丙基最好;若为芳烃基取代,可以是苯基或其它芳烃基。3.5-体积小的给电子基团可以增强活性.4.6,8位分别或同时引入氟原子,抗菌活性增大.5.7位引入五元或六元杂环,抗菌活性增大,以引入哌嗪环为最好。2.巴比妥药物具有哪些共同的化学性质?答;1)呈弱酸性,巴比妥类药物因能形成内酰亚氨醇一内酰胺互变异构,故呈弱酸性。2)水解性,巴比妥类药物因含环酰脲结构,其钠盐水溶液,不够稳定,甚至在吸湿情况下,也能水解。3)与银盐的反应,这类药物的碳酸钠的碱性溶液中与硝酸银溶液作用,先生成可溶性的一银盐,继而则生成不溶性的二银盐白色沉淀。4)与铜吡啶试液的反应,这类药物分子中含有-CONHCONHCO-的结构,能与重金属形成不溶性的络合物,可供鉴别。3.为什么巴比妥C5次甲基上的两个氢原子必须全被取代才有疗效答:未解离的巴比妥类药物分子较其离子易于透过细胞膜而发挥作用。巴比妥酸和一取代巴比妥酸的PKa值较小,酸性较强,在生理pH时,几乎全部解离,均无疗效。如5位上引入两个基团,生成的5,5位双取代物,则酸性大大降低,在生理pH时,未解离的药物分子比例较大,这些分子能透过血脑屏障,进入中枢神经系统而发挥作用。4.合成类镇痛药的按结构可以分成几类?这些药物的化学结构类型不同,但为什么都具有类似吗啡的作用?答:合成类镇痛药按结构可分为:哌啶类、氨基酮类和苯吗喃类。它们虽然无吗啡的五环的结构,但都具吗啡镇痛药的基本结构,即:(1)分子中具有一平坦的芳环结构。(2)有一个碱性中心,能在生理pH条件下大部分电离为阳离子,碱性中心和平坦结构在同一平面。(3)含有哌啶或类似哌啶的空间结构,而烃基部分在立体构型中,应突出在平面的前方。故合成类镇痛药能具有类似吗啡的作用。5.根据吗啡与可待因的结构,解释吗啡可与中性三氯化铁反应,而可待因不反应,以及可待因在浓硫酸存在下加热,又可以与三氯化铁发生显色反应的原因?答:从结构可以看出:吗啡分子中存在酚羟基,而可待因分子中的酚羟基已转化为醚键。因为酚可与中性三氯化铁反应显蓝紫色,而醚在同样条件下却不反应。但醚在浓硫酸存在下,加热,醚键可断裂重新生成酚羟基,生成的酚羟基可与三氯化铁反应显蓝紫色。6.巴比妥类药物的钠盐及苯妥英钠为何常制成粉针剂答:巴比妥分子中具有酰脲结构,其钠盐水溶液在室温放置时不稳定,易被水解生成苯基丁酰脲失去活性,受热可进一步水解.苯妥英钠环状具有环状酰脲结构,与碱加热可以分解产生二苯基脲基乙酸,最后生成二苯基氨基乙酸,并释放出氨。7.写出Morphine及Codeine的化学结构,根据两者结构讨论它们在酸碱性、稳定性方面的异同和药理活性的差异。答:吗啡结构中3位有游离的酚羟基,具有弱酸性,可与强碱成盐,但是与弱碱氢氧化铵不能生成稳定的盐。吗啡结构中17位有叔氮原子显碱性,可与强酸成盐。因此吗啡为两性物质。由于3位酚羟基的存在,吗啡盐类的水溶液不稳定,易被氧化变色,生成毒性较大的双吗啡(Dimorphine,也称伪吗啡).可待因(Codeine)是吗啡(Morphine)的3-甲基醚,两者结构不同处仅在3位上不同。可待因结构中无游离酚羟基,仅显碱性,可与酸成盐。化学性质较吗啡稳定,但遇光仍易变质。药理活性方面,因为3位酚羟基的存在可使镇痛活性增强。吗啡为μ受体强激动剂,镇痛作用强,还有镇静、镇咳作用,但有呼吸抑制等多种不良反应,成瘾性强。可待因结构中无游离酚羟基,药理活性仅为吗啡的1/10,为弱μ受体激动剂,呼吸抑制等不良反应也较吗啡轻,临床上主要用作中枢性镇咳药。8.简述苯二氮卓类药物的水解开环反应及其与生物利用度的关系答:水解时在1,2位、4,5位间开环,两过程平行进行。4,5位开环为可逆性水解,当pH提高到中性时又重新环合。当7位和1、2位有强吸电子基团(氯原子、硝基、三唑环等)存在时,例如:地西泮、硝西泮、艾司唑仑等,口服后药物在胃酸作用下,水解反应几乎都在4,5位上进行,当开环化合物进入肠道,因pH升高,又闭环成原药,因此对生物利用度无影响。9.经典H1受体拮抗剂有何突出不良反应?为什么?第二代H1受体拮抗剂如何克服这一缺点?答:经典H1-受体拮抗剂最突出的毒副反应是中枢抑制作用,可引起明显的镇静、嗜睡。产生这种作用的机制尚不十分清楚,有人认为这些药物易通过血脑屏障,并与脑内H1受体有高度亲和力,由此拮抗脑内的内源性组胺引起的觉醒反应而致中枢抑制。第二代H1受体拮抗剂通过限制药物进入中枢和提高药物对外周H1受体的选择性来发展新型非镇静性抗组胺药。如AcriVastine和Cetirizine就是通过引入极性或易电离基团使药物难以通过血脑屏障进入中枢,克服镇静作用的。而Mizolastine、C1emastine和Loratadine则是对外周H1受体有较高的选择性,避免中枢副作用.10.结构如下的化合物将具有什么临床用途和可能的毒副反应?若将氮上取代的甲基换成异丙基,又将如何?答:氮上取代基的变化主要影响拟肾上腺素药物对a受体和β受体作用的选择性。当氮上甲基取代时,即肾上腺素,对a受体和β受体均有激动作用,作用广泛而复杂,当某种作用成为治疗作用时,其他作用就可能成为辅助作用或毒副作用。肾上腺素具有兴奋心脏,使心收缩力加强,心率加快,心输出量增加,收缩血管,升高血压,舒张支气管平滑肌等主要作用。临床主要用于过敏性休克、心脏骤停和支气管哮喘的急救。不良反应一般有心悸、不安、面色苍白、头痛、震颤等。将甲基换作异丙基即为异丙肾上腺素,为非选择性β受体激动剂,对a受体几无作用,对心脏的β1受体和血管、支气管、胃肠道等平滑肌的β2受体均有激动作用。临床用于支气管哮喘、房室传导阻滞、休克、心搏骤停。常见不良反应有心悸、头痛、皮肤潮红等。11.从普鲁卡因的结构分析其化学稳定性,说明配制注射液时注意事项及药典规定杂质检查的原因。答:普鲁卡因的化学稳定性较低,原因有二。其一,结构中含有酯基,易被水解失活,酸、碱和体内酯酶均能促使其水解,温度升高也加速水解。其二,结构中含有芳伯氨基,易被氧化变色,PH即温度升高、紫外线、氧、重金属离子等均可加速氧化。所以注射剂制备中要控制到稳定的PH范围3.5~5.0,低温灭菌(100℃,30min)通入惰性气体,加入抗氧剂及金属离子掩蔽剂等稳定剂。Procaine水解生成对氨基苯甲酸和二乙氨基乙醇,所以中国药典规定要检查对氨基苯甲酸的含量。12.以普萘洛尔为例,分析芳氧丙醇类b-受体阻滞剂的结构特点及构效关系。答:普萘洛尔是在对异丙肾上腺素的构效关系研究中发现的非选择性β一受体阻滞剂,结构中含有一个氨基丙醇侧链,属于芳氧丙醇胺类化合物,1位是异丙氨基取代、3位是萘氧基取代,C2为手性碳,由此而产生的两个对映体活性不一样,左旋体活性大于右旋体,但药用其外消旋体。为了克服普萘洛尔用于治疗心律失常和高血压时引起的心脏抑制、发生支气管痉挛、延缓低血糖的恢复等副作用,以普萘洛尔为先导化合物设计并合成了许多类似物,其中大多数为芳氧丙醇胺类化合物,少数为芳基乙醇胺类化合物,这两类药物的结构都是由三个部分组成:芳环、仲醇胺侧链和N一取代基,并具有相似的构效关系:1.芳环部分可以是苯、萘、杂环、稠环和脂肪性不饱和杂环,环上可以有甲基、氯、甲氧基、硝基等取代基,2,4-或2,3,6-同时取代时活性最佳。2.氧原子用S、CH2或NCH3取代,作用降低。3.C2为S构型,活性强,R构型活性降低或消失。4.N一取代基部分以叔丁基和异丙基取代活性最高,烷基碳原子数少于3或N,N-双取代活性下降。13.9.二氢吡啶类钙拮抗剂的构效关系答:①.1,4-二氢吡啶环是必须结构。氧化为吡啶,作用消失;还原双键,作用减弱。②.二氢吡啶环上的NH不被取代可保持最佳活性。③.2,6位取代基应为低级烷烃。④.3,5位羧酸酯基优于其它基团,且两个酯基不同者优于相同者。可容纳较大基团。主要影响血管选择性和作用时间。⑤.4位主要影响作用强度,以取代苯基为宜,且苯环的邻、间位吸电子基取代增强活性;对位取代则活性降低或消失。⑥.S构型体活性较强。⑦.苯环平面与二氢吡啶环平面的扭角越小,活性越强。14.氮芥类抗肿瘤药物是如何发展而来的?其结构是由哪两部分组成的?并简述各部分的主要作用。答:氮芥的发现源于芥子气,第一次世界大战使用芥子气作为毒气,后来发现芥子气对淋巴癌有治疗作用,由于对人的毒性太大,不可能作为药用而在此基础上发展出氮芥类抗肿瘤药。氮芥类化合物分子由两部分组成:烷基化部分是抗肿瘤的功能基,载体部分的改变可改善药物在体内的药代动力学性质15.天然青霉素G有哪些缺点?试述半合成青霉素的结构改造方法。答:天然青霉素G的缺点为对酸不稳定,不能口服,只能注射给药;抗菌谱比较狭窄,仅对革兰阳性菌的效果好;细菌易对其产生耐药性;有严重的过敏性反应。1.在青霉素的侧链上引入吸电子基团,阻止侧链羰基电子向β一内酰胺环的转移,增加了对酸的稳定性,得到一系列耐酸青霉素。2.在青霉素的侧链上引入较大体积的基团,阻止了化合物与酶活性中心的结合。又由于空间阻碍限制酰胺侧链R与羧基间的单键旋转,从而降低了青霉素分子与酶活性中心作用的适应性,因此药物对酶的稳定性增加。3.在青霉素的侧链上引入亲水性的基团(如氨基,羧基或磺酸基等),扩大了抗菌谱,不仅对革兰阳性菌有效,对多数革兰阴性菌也有效。16.试说明耐酸、耐酶、广谱青霉素的结构特点,并举例。答:耐酸青霉素的侧链上大都具有吸电子基团,如非奈西林、阿度西林等;耐酶青霉素的侧链上都有较大体积的基团取代,如苯唑西林、甲氧西林等;广谱青霉素的侧链中都具有亲水性的基团(如氨基,羧基或磺酸基等),如阿莫西林、羧苄西林等。17.喹诺酮类药物的主要不良反应答:1软骨毒性.2皮肤过敏反应及光毒性.3对心脏的毒性作用.4.对中枢神经系统.5对胃肠道的作用.6.肝脏毒性18.按结构分类,生物烷化剂分为哪几类,举例。答:1.氮芥类包括:(1)脂肪氮芥:盐酸氮芥.(2)芳香氮芥:苯丁酸氮芥(瘤可宁).(3)氨基酸氮芥:氮甲(甲酰溶肉瘤素).(4).杂环氮芥:环磷酰胺(癌得星).(5)甾体氮芥:泼尼莫司汀.磷酸雌莫司汀2.乙烯亚胺类:替派(TEPA),塞替派(TSPA).3.磺酸酯类:白消安(马利兰).4.卤代多元醇类:二澳卫矛醇.5.亚硝基脲类:卡莫司汀(BCNU)、洛莫司汀(CCNU)、司莫司汀(Me-CCNU)19.抗代谢类抗肿瘤药的设计思路是怎样的,以一个具体的药物为例进行说明。答:利用生物电子等排原理设计,用具有相似的物理和化学性质,又能产生相似的生物活性的相同价键的基团,取代生物机体的本源代谢物.如腺嘌呤和鸟嘌呤是DNA的组成部分,次黄嘌呤是二者生物合成的重要中间体,巯嘌呤就是将次黄嘌呤的羟基改变为巯基得到的衍生物,干扰DNA的正常代谢。20.青霉素类抗生素的构效关系答:1.四元环骈合五元环为活性必需。三个手性碳为活性必需(2S,5R,6R).2.2-COOH是保持活性必需基团。(酯化失活或成前药).3.3-二甲基非活性必需.4.6-H甲基或甲氧基取代活性降低。(增大位阻,可提高耐酶性)。6-NH2是结构修饰的主要部位。酰化侧链影响抗菌强度、抗菌谱、耐酶性、耐酸性:1)引入吸电子基——增强耐酸性。2)引入大体积基团——提高耐酶性。3)引入极性基团——扩大抗菌谱21.青霉素的理化性质.(主要是在不同条件下的产物)答1)强酸性条件下加热(或氯化汞)→分解为青霉醛和D-青霉胺.2)室温酸性条件下→重排生成青霉二酸.3)氢氧化钠溶液或酶→青霉酸.4)胺和醇进攻→青霉酰胺和青霉酸酯22.抗生素按结构分为哪几种?每种举出一个代表性的例子.答:1.β-内酰胺类:青霉素、头孢霉素2.四环素类:四环素3.氨基糖甙类:链霉素4.大环内酯类:红霉素.5.氯霉素类:氯霉素23.四环素类,氨基糖苷类,大环内酯类,氯霉素类抗生素的