第1页,共19页2019年山东省日照市中考数学复习试卷(附答案)副标题题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.2的倒数是()A.−2B.12C.−12D.22.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A.B.C.D.3.在实数√83,𝜋3,√12,43中有理数有()A.1个B.2个C.3个D.4个4.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯5.如图,该几何体是由4个大小相同的正方体组成,它的俯视图是()A.B.C.D.第2页,共19页6.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35∘B.45∘C.55∘D.65∘7.把不等式组{2−𝑥≤5𝑥+32<2的解集在数轴上表示出来,正确的是()A.B.C.D.8.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36−15√3)米C.15√3米D.(36−10√3)米9.在同一平面直角坐标系中,函数y=kx+1(k≠0)和y=𝑘𝑥(k≠0)的图象大致是()A.B.C.D.10.某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是()A.1000(1+𝑥)2=3990B.1000+1000(1+𝑥)+1000(1+𝑥)2=3990C.1000(1+2𝑥)=3990D.1000+1000(1+𝑥)+1000(1+2𝑥)=399011.如图,是二次函数y=ax2+bx+c图象的一部分,下列结论中:①abc>0;②a-b+c<0;③ax2+bx+c+1=0有两个相第3页,共19页等的实数根;④-4a<b<-2a.其中正确结论的序号为()A.①②B.①③C.②③D.①④12.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(−1008,0)B.(−1006,0)C.(2,−504)D.(1,505)二、填空题(本大题共4小题,共16.0分)13.已知一组数据8,3,m,2的众数为3,则这组数据的平均数是______.14.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为______cm.15.规定:在平面直角坐标系xOy中,如果点P的坐标为(a,b),那么向量𝑂𝑃⃗⃗⃗⃗⃗可以表示为:𝑂𝑃⃗⃗⃗⃗⃗=(a,b),如果𝑂𝐴⃗⃗⃗⃗⃗与𝑂𝐵⃗⃗⃗⃗⃗⃗互相垂直,𝑂𝐴⃗⃗⃗⃗⃗=(x1,y1),𝑂𝐵⃗⃗⃗⃗⃗⃗=(x2,y2),那么x1x2+y1y2=0.若𝑂𝑀⃗⃗⃗⃗⃗⃗⃗与𝑂𝑁⃗⃗⃗⃗⃗⃗互相垂直,𝑂𝑀⃗⃗⃗⃗⃗⃗⃗=(sinα,1),𝑂𝑁⃗⃗⃗⃗⃗⃗=(2,-√3),则锐角∠α=______.16.如图,已知动点A在函数𝑦=4𝑥(𝑥>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA交以A为圆心AB长为半径的圆弧于点E,延长BA交以A为圆心AC长为半径的圆弧于点F,直线EF分别交x轴、y轴于点M、N,当NF=4EM时,图中阴影部分的面积等于______.三、计算题(本大题共1小题,共12.0分)第4页,共19页17.(1)计算:|√3-2|+π0+(-1)2019-(12)-1;(2)先化简,再求值:1-𝑎+3𝑎2−1÷𝑎+3𝑎−1,其中a=2;(3)解方程组:{2𝑥−𝑦=5,3𝑥+4𝑦=2.四、解答题(本大题共5小题,共56.0分)18.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.19.“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?第5页,共19页20.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.21.探究活动一:如图1,某数学兴趣小组在研究直线上点的坐标规律时,在直线AB上的三点A(1,3)、B(2,5)、C(4,9),有kAB=5−32−1=2,kAC=9−34−1=2,发现kAB=kAC,兴趣小组提出猜想:若直线y=kx+b(k≠0)上任意两点坐标P(x1,y1),Q(x2,y2)(x1≠x2),则kPQ=𝑦2−𝑦1𝑥2−𝑥1是定值.通过多次验证和查阅资料得知,猜想成立,kPQ是定值,并且是直线y=kx+b(k≠0)中的k,叫做这条直线的斜率.请你应用以上规律直接写出过S(-2,-2)、T(4,2)两点的直线ST的斜率kST=______.探究活动二数学兴趣小组继续深入研究直线的“斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相要直时,这两条直线的斜率之积是定值.如图2,直线DE与直线DF垂直于点D,D(2,2),E(1,4),F(4,3).请求出直线DE与直线DF的斜率之积.综合应用如图3,⊙M为以点M为圆心,MN的长为半径的圆,M(1,2),N(4,5),请结合探究活动二的结论,求出过点N的⊙M的切线的解析式.第6页,共19页22.如图1,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+12PA的值最小,请求出这个最小值,并说明理由.第7页,共19页答案和解析1.【答案】B【解析】解:2的倒数为.故选:B.依据倒数的定义回答即可.本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.此题主要考查了中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:在实数,,,中=2,有理数有,共2个.故选:B.整数和分数统称为有理数,依此定义求解即可.此题考查了有理数和无理数的定义,注意需化简后再判断.4.【答案】B【解析】第8页,共19页解:A.掷一次骰子,向上一面的点数是6,属于随机事件;B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;C.射击运动员射击一次,命中靶心,属于随机事件;D.经过有交通信号灯的路口,遇到红灯,属于随机事件;故选:B.事先能肯定它一定会发生的事件称为必然事件,即发生的概率是1的事件.该题考查的是对必然事件的概念的理解,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.5.【答案】B【解析】解:从上面可看到从上往下2行小正方形的个数为:2,1,并且下面一行的正方形靠左,故选:B.找到从上面看所得到的图形即可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.【答案】C【解析】解:∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.【答案】C【解析】解:解不等式①得:x≥-3,第9页,共19页解不等式②得:x<1,故不等式组的解集为:-3≤x<1,在数轴上表示为:故选:C.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再把不等式组的解集在数轴上表示出来即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.【答案】D【解析】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD-BE=(36-10)(米).∴甲楼高为(36-10)米.故选:D.分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD-BE.此题考查了解直角三角形的应用,解答本题的关键是将实际问题转化为解直角三角形的问题,求出BE的长度,难度一般.9.【答案】C【解析】解:①当k>0时,y=kx+1过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+1过一、二、四象象限;y=过二、四象限.观察图形可知,只有C选项符合题意.第10页,共19页故选:C.分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.10.【答案】B【解析】解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990.故选:B.设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11.【答案】D【解析】解:由抛物线的开口方向向上可推出a>0,与y轴的交点为在y轴的负半轴上可推出c=-1<0,对称轴为x=->1>0,a>0,得b<0,故abc>0,故①正确;由对称轴为直线x=->1,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,所以当x=-1时,y>0,所以a-b+c>0,故②错误;第11页,共19页抛物线与y轴的交点为(0,-1),由图象知二次函数y=ax2+bx+c图象与直线y=-1有两个交点,故ax2+bx+c+1=0有两个不相等的实数根,故③错误;由对称轴为直线x=-,