SPSS10.0高级教程十三:分类资料的Logistic回归分析(2009-02-0515:32:54)转载所谓Logistic模型,或者说Logistic回归模型,就是人们想为两分类的应变量作一个回归方程出来,可概率的取值在0~1之间,回归方程的应变量取值可是在实数集中,直接做会出现0~1范围之外的不可能结果,因此就有人耍小聪明,将率做了一个Logit变换,这样取值区间就变成了整个实数集,作出来的结果就不会有问题了,从而该方法就被叫做了Logistic回归。随着模型的发展,Logistic家族也变得人丁兴旺起来,除了最早的两分类Logistic外,还有配对Logistic模型,多分类Logistic模型、随机效应的Logistic模型等。由于SPSS的能力所限,对话框只能完成其中的两分类和多分类模型,下面我们就介绍一下最重要和最基本的两分类模型。10.3.1界面详解与实例例11.1某研究人员在探讨肾细胞癌转移的有关临床病理因素研究中,收集了一批行根治性肾切除术患者的肾癌标本资料,现从中抽取26例资料作为示例进行logistic回归分析(本例来自《卫生统计学》第四版第11章)。i:标本序号x1:确诊时患者的年龄(岁)x2:肾细胞癌血管内皮生长因子(VEGF),其阳性表述由低到高共3个等级x3:肾细胞癌组织内微血管数(MVC)x4:肾癌细胞核组织学分级,由低到高共4级x5:肾细胞癌分期,由低到高共4期y:肾细胞癌转移情况(有转移y=1;无转移y=0)。ix1x2x3x4x5y159243.4210236157.211036121902104583128431555380341661194.421073817611084212403209501741101058368.622011683132.84201225294.643113521561101431147.82101536331.63111642166.221017143138.6331183211142301935140.221020703177.24312165251.64412245212424023683127.233124312124.82302558112843026603149.8431在菜单上选择Analyze==》Regression==》BinaryLogistic...,系统弹出Logistic回归对话框如下:左侧是候选变量框,右上角是应变量框,选入二分类的应变量,下方的Covariates框是用于选入自变量的,只不过这里按国外的习惯被称为了协变量。两框中间的是BLOCK系列按扭,我在上一课已经讲过了,不再重复。中下部的a*b框是用于选入交互作用的,和其他的对话框不太相同(我也不知道为什么SPSS偏在这里做得不同),下方的Method列表框用于选择变量进入方法,有进入法、前进法和后退法三大类,三类之下又有细分。最下面的四个按钮比较重要,请大家听我慢慢道来:oSelect钮:用于限定一个筛选条件,只有满足该条件的记录才会被纳入分析,单击它后对话框会展开让你填入相应的条件。不过我觉得该功能纯属多余,和专门的Select对话框的功能重复了。oCategorical钮:如果你的自变量是多分类的(如血型等),你必须要将它用哑变量的方式来分析,那么就要用该按钮将该变量指定为分类变量,如果有必要,可用里面的选择按钮进行详细的定义,如以哪个取值作为基础水平,各水平间比较的方法是什么等。当然,如果你弄不明白,不改也可以,默认的是以最大取值为基础水平,用Deviance做比较。oSave钮:将中间结果存储起来供以后分析,共有预测值、影响强度因子和残差三大类。oOptions钮:这一部分非常重要,但又常常被忽视,在这里我们可以对模型作精确定义,还可以选择模型预测情况的描述方式,如StatisticsandPlots中的Classificationplots就是非常重要的模型预测工具,Correlationsofestimates则是重要的模型诊断工具,Iterationhistory可以看到迭代的具体情况,从而得知你的模型是否在迭代时存在病态,下方则可以确定进入和排除的概率标准,这在逐步回归中是非常有用的。好,根据我们的目的,应变量为Y,而X1~X5为自变量,具体的分析操作如下:1.Analyze==》Regression==》BinaryLogistic...2.Dependent框:选入Y3.Covariates框:选入x1~x54.OK钮:单击10.3.2结果解释LogisticRegression上表为记录处理情况汇总,即有多少例记录被纳入了下面的分析,可见此处因不存在缺失值,26条记录均纳入了分析。上表为应变量分类情况列表,没什么好解释的。Block0:BeginningBlock此处已经开始了拟合,Block0拟合的是只有常数的无效模型,上表为分类预测表,可见在17例观察值为0的记录中,共有17例被预测为0,9例1也都被预测为0,总预测准确率为65.4%,这是不纳入任何解释变量时的预测准确率,相当于比较基线。上表为Block0时的变量系数,可见常数的系数值为-0.636。上表为在Block0处尚未纳入分析方程的侯选变量,所作的检验表示如果分别将他们纳入方程,则方程的改变是否会有显著意义(根据所用统计量的不同,可能是拟合优度,Deviance值等)。可见如果将X2系列的哑变量纳入方程,则方程的改变是有显著意义的,X4和X5也是如此,由于Stepwise方法是一个一个的进入变量,下一步将会先纳入P值最小的变量X2,然后再重新计算该表,再做选择。Block1:Method=ForwardStepwise(Conditional)此处开始了Block1的拟合,根据我们的设定,采用的方法为Forward(我们只设定了一个Block,所以后面不会再有Block2了)。上表为全局检验,对每一步都作了Step、Block和Model的检验,可见6个检验都是有意义的。此处为模型概况汇总,可见从STEP1到STEP2,DEVINCE从18降到11,两种决定系数也都有上升。此处为每一步的预测情况汇总,可见准确率由Block0的65%上升到了84%,最后达到96%,效果不错,最终只出现了一例错判。上表为方程中变量检验情况列表,分别给出了Step1和Step2的拟合情况。注意X4的P值略大于0.05,但仍然是可以接受的,因为这里用到的是排除标准(默认为0.1),该变量可以留在方程中。以Step2中的X2为例,可见其系数为2.413,OR值为11。上表为假设将这些变量单独移出方程,则方程的改变有无统计学意义,可见都是有统计学意义的,因此他们应当保留在方程中。最后这个表格说明的是在每一步中,尚未进入方程的变量如果再进入现有方程,则方程的改变有无统计学意义。可见在Step1时,X4还应该引入,而在Step2时,其它变量是否引入都无关了。10.3.3模型的进一步优化与简单诊断10.3.3.1模型的进一步优化前面我们将X1~X5直接引入了方程,实际上,其中X2、X4、X5这三个自变量为多分类变量,我们并无证据认为它们之间个各等级的OR值是成倍上升的,严格来说,这里应当采用哑变量来分析,即需要用Categorical钮将他们定义为分类变量。但本次分析不能这样做,原因是这里总例数只有26例,如果引入哑变量模型会使得每个等级的记录数非常少,从而分析结果将极为奇怪,无法正常解释,但为了说明哑变量模型的用法,下面我将演示它是如何做的,毕竟不是每个例子都只有26例。默认情况下定义分类变量非常容易,做到如上图所示就可以了,此时分析结果中的改变如下:上表为自变量中多分类变量的哑变量取值情况代码表。左侧为原变量名及取值,右侧为相应的哑变量名及编码情况:以X5为例,表中可见X5=4时,即取值最高的情况被作为了基线水平,这是多分类变量生成哑变量的默认情况。而X5(1)代表的是X5=1的情况(X5为1时取1,否则取0),X5(2)代表的是X5=2的情况,依此类推。同时注意到许多等级值有几个记录,显然后面的分析结果不会太好。相应的,分析结果中也以哑变量在进行分析,如下所示:上表出现了非常有趣的现象:所有的检验P值均远远大于0.05,但是所有的变量均没有被移出方程,这是怎么回事?再看看下面的这个表格吧。这个表格为方程的似然值改变情况的检验,可见在最后Step2生成的方程中,无论移出X2还是X4都会引起方程的显著性改变。也就是说,似然比检验的结果和上面的Walds检验结果冲突,以谁为准?此处应以似然比检验为准,因为它是全局性的检验,且Walds检验本身就不太准,这一点大家记住就行了,实在要弄明白请去查阅相关文献。请注意:上面的哑变量均是以最高水平为基线水平,这不符合我们的目的,我们希望将最低水平作为基线水平。比如以肾细胞癌第一期为基线水平,需要这样做只要在Categoriacl框中选中相应的变量,在ReferenceCategory处选择First,再单击Change即可,此时变量旁的标示会做出相应的改变如下:分析结果中也会做出相应的改变,此处略。10.3.3.2模型的简单诊断SPSS本身提供了几种用于模型诊断的工具,基本上都集中在Options对话框中,除了大家熟悉的残差分析外,这里这种介绍三种简单而有非常有用的工具:迭代记录、相关矩阵和分类图。上表为Block1的迭代记录,可见无论是似然值,还是三个系数值,均是从迭代开始就向着一个方向发展,最终达到收敛,这说明整个迭代过程是健康的,问题不大;如果中途出现波折,尤其是当引入新变量后变化方向改变了,则提示要好好研究。上表为方程中变量的相关矩阵,可见X2和常数相关性较强,当引入X4后仍然如此,提示要关注这一现象,以防因自变量间的共线性导致方程系数不稳(此时迭代记录多半也会有波动)。当然,由于本例只有26条记录,这一问题是没有办法深入研究的。上图是Step1结束时,即只引入X2时的预测图,0和1代表实际取值,当预测的概率值大于0.5时,则预测结果为1,反之为0,由上图可见,该模型对0的预测是比较好的,多数的概率都在0附近,但对1的预测不准,即使正确的,计算出的概率也在0.8左右,并且有好几个都判错了。上图为Step2结束后模型的预测状况,可见此时预测结果有了较大的改善,概率精度提高了许多,只有一例0被错判为了1,并且从分布上看,这一例可能是极端情况,再引入其它变量也不见的能将预测效果改变多少。