博士研究生学位论文答辩化学与分子工程学院北京大学化学学院博士学位论文答辩答辩人:魏芳指导老师:赵新生2003年6月6日发卡型DNA设计与电势控制结合实现单碱基多态性识别的新方法简介课题背景检测设计思想交流阻抗检测表面杂交镶嵌型染料检测表面杂交致谢一、课题背景基因芯片检测原理碱基互补配对杂交原理Affymetrixp53chipDNA序列的突变PM----perfectmatch完全配对序列SM----single-basemismatch单点错配序列DM----double-basemismatch两点错配序列课题背景目前基因芯片的检测方法有标记:荧光、同位素标记、酶标法无标记:交流阻抗、石英晶体微天平、表面等离子体共振、质谱法目前基因芯片的不足成本、特异性、全局优化单个碱基不同的寡聚核酸序列的识别(SNP)二、检测设计思想Hairpindesign+Potentialcontrol设计思想COOHNHS/EDCMMcomplementarysingle-basemismatchSiOHOSiOHOSiOHOSiI----发卡型分子杂交检测原理Tyagi,S.,etalNatureBiotechnology1996,14,303II----对修饰表面杂交过程的控制改变溶液的浓度、pH、离子强度进行控制利用温度变化进行控制利用外加电场进行控制Tomoharukajiyama,PatentNo:US2002164778HitachiHigh-TechnologiesCorpII-----电场控制下的表面杂交过程ConcentrationChange------accumulationConformationChange-----orientation,stretchDuplexChange----annealing,denaturationSi电场对DNA的富集作用MartinStelzle,etal,FreseniusJAnalChem(2001)371:112–119II-----电场控制下的表面杂交过程ConcentrationChange------accumulationConformationChange-----orientation,stretchDuplexChange----annealing,denaturationSi电场对双链在电极表面排列的影响ShanaO.Kelley,etal,Langmuir,Vol.14,No.24,19986783II-----电场控制下的表面杂交过程ConcentrationChange------accumulationConformationalChange-----orientation,stretchDuplexChange----annealingordenaturationSiComplementarytargetSi电场对杂交动力学的控制Heatonetal.PNAS,2001vol.98no.73703检测基底的制备路线-1Si(111)H-terminatedAlkylmodifiedetchRRRRRHHHHHF/NH4FUVlightAtomicflatmonolayercovalentlybondedtotheSi(111)surface检测基底的制备路线-2硅表面为-COOH将-COOH表面活化DNAfragmentsNHS/EDCcomplementaryDNAsequenceNOCOOOCOOHCsinglestrandDNAOCOdoublestrandDNA活化后的表面与单链DNA反应接有单链DNA的表面与配对链杂交检测方法交流阻抗识别PM/SM镶嵌型染料识别PM/SM三、交流阻抗杂交检测重复性实验检测0100200300400500600non-complementarystrandnon-complementarystrandcomplementarystrandcomplementarystrandcomplementarystrandnon-complementarystranddelta(C)%Time(second)gooddiscriminationandreusabilityofhairpinprobesRound1Round2Round3探针分子设计探针分子5'-GCGAGCCCTCCGGTTCATGCCGCTCGC-3’目标分子:完全匹配(WT)5‘-GGCATGAACCGGAGG-3'点错配(MT)5'-GGCATGAACTGGAGG-3'Codon248TGAACCGGAGG位于第7个外显子上:Exon7发生点突变的模式CGGTGG,编码的氨基酸为ArgTrp发卡的环—fromsegmentofp53网上共享计算软件:MfoldTMZuker,etal.探针分子设计Probe15'-GCGAGCCCTCCGGTTCATGCCGCTCGC-3'Probe25’-CCTCCGGTTCATGCC-3’Probe35’-GCGAGCGTTCATGCCGCCCATGCTCGC-3’Probe45’-CGAGCGTTCATGCCGCCCATGCTCG-3’6565探针分子设计Tm(WT)(C)Tm(Pc)(C)Tm(MT)(C)Probe1686660Probe2682760Probe3686854Probe4685954MTWTDesired:Tm(WT)Tm(Pc)Tm(MT)4ProbesaredesignedtotestourideaontheoptimalperformancePcDNA修饰电极的Mott-Schottky图-1.0-0.8-0.6-0.4-0.20.001x10132x10133x10134x1013PcPc+MTPc+WT1/(Cs)2(cm2/F2)Potential(vsSCE)(V)杂交反应的实时检测SampleWECE(Pt)RE(SCE)WE电位控制020040060080010000.940.960.981.000.940.960.981.000.940.960.981.00-0.3V-0.5VNormalizedCapacitanceTime(s)-0.7V21Realtimemonitorofhybridization1:additionofMT2:additionofWTDiscriminationbetweenWTandMTdependsontheelectricpotentialapplied电位控制+发卡型分子设计=特异识别-1.0-0.8-0.6-0.4-0.20.0-20-10010203040Probe2Probe3Probe4Probe1D(vsSCE)(V)Bestdesign(Probes1and4)givesthehighestdiscriminationbetweenWTandMT第三部分总结本实验中成功的将DNA分子接在了硅电极表面,并可以进行杂交反应和解链反应。实验所采用的利用阻抗对DNA修饰表面的杂交过程检测及实时检测的灵敏度较高,并且时间响应很快。合理的探针分子设计与电势控制结合,可以实现对单个碱基错配序列的特异性识别。四、镶嵌式染料特异性识别镶嵌式染料的检测原理IntercalatorDyetoduplexofDNALerman,L.S.J.Mol.Biol.,1961,3,18-30.PicoGreen-结构unsymmetricalcyaninedyeEx480nm,Em520nmStabletophotobleachingPicoGreen对不同DNA链的识别FluorescenceEnhancement50055060065070002004006008001000Fluorescencewavelength(nm)1-Background2-Probe1only3-HybridizedwithSM4-HybridizedwithPM1234实验路线MMComplementarytargetSinglebasemismatchedtargetSiSiHybridizationSiPicoGreenDarkPicoGreen探针分子设计探针分子----LPL(LipoproteinLipasesequencecontaining447XSNP)发生突变模式:Wildtype:TCA447SNP:TGA种类DNA序列Probe15’-CCCCCGTTTCAGCCTGACTTCTTATTGGGGG-3Probe25’-GTTTCAGCCTGACTTCTTATT-3’PM5’-AATAAGAAGTCAGGCTGAAAC-3SM5’-AATAAGAAGTGAGGCTGAAAC-3’DM5’-AATAAGTAGTCAGGGTGAAAC-3’实验装置CElaser514nmWECEInsitufluorescencedetectioncell电位控制下的特异性识别发卡型探针分子可以清楚地分辨PM,DM和SM-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.00.20.40.6-0.20.00.20.40.60.81.01.2IntensityPotential(V)HPMHSMHDM电位控制下的特异性识别-1.0-0.8-0.6-0.4-0.20.00.20.40.6-0.20.00.20.40.60.81.0LPMLSMLDMIntensityPotential(V)线型探针分子无法区分PM,SM和DM电位控制下的特异性识别解链半高电位E1/2-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.00.00.20.40.60.81.01.2IntensityPotential(V)E1/2-2.0-1.5-1.0-0.50.0-0.20.00.20.40.60.81.01.2Data:pt50mVmin_DModel:sigmoidalEquation:y=P1*exp((x-P2)/P3)/(1+exp((x-P2)/P3))Weighting:yNoweightingChi^2/DoF=0.00116R^2=0.99402P10.998?.01135P2-0.48801?.00531P30.05399?.0046210mV/min20mV/min50mV/minIntensityPotential(V)不同扫描速度的识别能力PM解链电势扫描曲线SM解链电势扫描曲线-2.0-1.6-1.2-0.8-0.40.00.4-0.20.00.20.40.60.81.01.2Data:mt20mVmin2_DModel:sigmoidalEquation:y=P1*exp((x-P2)/P3)/(1+exp((x-P2)/P3))Weighting:yNoweightingChi^2/DoF=0.00114R^2=0.99492P11.00064?.02494P2-0.0642?.01064P30.09438?.0087710mV/min20mV/min50mV/minIntensityPotential(V)不同扫描速度的识别能力PM和SM的解链电位曲线与扫描速度相关性不同解链电位曲线随扫描速度减慢而负移Scanrate(mV/min)E1/2-PM(V)E1/2-SM(V)E1/2-DM(V)|E1/2(PM)-E1/2(SM)|(V)10-0.99-0.16-0.090.8320-0.64-0.06-0.5850-0.490.04-0.53展望双链解链反应机理利用解链电位曲线计算现场杂交时的碱基能量差值如何更好的控制双链的解链-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.00.20.40.6-0.20.00.20.40.60