《数字信号处理》试题库答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一.填空题1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n);输入为x(n-3)时,输出为y(n-3)。2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax关系为:fs=2fmax。3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(ejw),它的N点离散傅立叶变换X(K)是关于X(ejw)的N点等间隔采样。4、有限长序列x(n)的8点DFT为X(K),则X(K)=。5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的混叠现象。6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2。7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N=8。10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。12.对长度为N的序列x(n)圆周移位m位得到的序列用xm(n)表示,其数学表达式为xm(n)=x((n-m))NRN(n)。13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。14.线性移不变系统的性质有交换率、结合率和分配律。15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。17.如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点的基2FFT需要10级蝶形运算,总的运算时间是______μs。二.选择填空题1、δ(n)的z变换是A。A.1B.δ(w)C.2πδ(w)D.2π2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax关系为:A。A.fs≥2fmaxB.fs≤2fmaxC.fs≥fmaxD.fs≤fmax3、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s=C。A.1111zzzB.1111zzzsC.11211zzTzD.11211zzTz4、序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。A.5,5B.6,5C.6,6D.7,55、无限长单位冲激响应(IIR)滤波器的结构是C型的。A.非递归B.反馈C.递归D.不确定6、若数字滤波器的单位脉冲响应h(n)是对称的,长度为N,则它的对称中心是B。A.N/2B.(N-1)/2C.(N/2)-1D.不确定7、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N=D。A.2πB.4πC.2D.88、一LTI系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为;输入为x(n-3)时,输出为。A.2y(n),y(n-3)B.2y(n),y(n+3)C.y(n),y(n-3)D.y(n),y(n+3)9、用窗函数法设计FIR数字滤波器时,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时,阻带衰减比加三角窗时。A.窄,小B.宽,小C.宽,大D.窄,大10、在N=32的基2时间抽取法FFT运算流图中,从x(n)到X(k)需B级蝶形运算过程。A.4B.5C.6D.311.X(n)=u(n)的偶对称部分为(A)。A.1/2+δ(n)/2B.1+δ(n)C.2δ(n)D.u(n)-δ(n)12.下列关系正确的为(B)。A.nkknnu0)()(B.0)()(kknnuC.nkknnu)()(D.kknnu)()(13.下面描述中最适合离散傅立叶变换DFT的是(B)A.时域为离散序列,频域也为离散序列B.时域为离散有限长序列,频域也为离散有限长序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散周期序列,频域也为离散周期序列14.脉冲响应不变法(B)A.无混频,线性频率关系B.有混频,线性频率关系C.无混频,非线性频率关系D.有混频,非线性频率关系15.双线性变换法(C)A.无混频,线性频率关系B.有混频,线性频率关系C.无混频,非线性频率关系D.有混频,非线性频率关系16.对于序列的傅立叶变换而言,其信号的特点是(D)A.时域连续非周期,频域连续非周期B.时域离散周期,频域连续非周期C.时域离散非周期,频域连续非周期D.时域离散非周期,频域连续周期17.设系统的单位抽样响应为h(n),则系统因果的充要条件为(C)A.当n0时,h(n)=0B.当n0时,h(n)≠0C.当n0时,h(n)=0D.当n0时,h(n)≠018.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过(A)即可完全不失真恢复原信号。A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器19.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为(C)。A.R3(n)B.R2(n)C.R3(n)+R3(n-1)D.R2(n)+R2(n-1)20.下列哪一个单位抽样响应所表示的系统不是因果系统?(D)A.h(n)=δ(n)B.h(n)=u(n)C.h(n)=u(n)-u(n-1)D.h(n)=u(n)-u(n+1)21.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括(A)。A.单位圆B.原点C.实轴D.虚轴22.已知序列Z变换的收敛域为|z|1,则该序列为(C)。A.有限长序列B.无限长右边序列C.无限长左边序列D.无限长双边序列23.实序列的傅里叶变换必是(A)。A.共轭对称函数B.共轭反对称函数C.奇函数D.偶函数24.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是(A)。A.N≥MB.N≤MC.N≤2MD.N≥2M25.用按时间抽取FFT计算N点DFT所需的复数乘法次数与(D)成正比。A.NB.N2C.N3D.Nlog2N26.以下对双线性变换的描述中不正确的是(D)。A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内D.以上说法都不对27.以下对FIR和IIR滤波器特性的论述中不正确的是(A)。A.FIR滤波器主要采用递归结构B.IIR滤波器不易做到线性相位C.FIR滤波器总是稳定的D.IIR滤波器主要用来设计规格化的频率特性为分段常数的标准滤波器28、设系统的单位抽样响应为h(n)=δ(n-1)+δ(n+1),其频率响应为(A)A.H(ejω)=2cosωB.H(ejω)=2sinωC.H(ejω)=cosωD.H(ejω)=sinω29.若x(n)为实序列,X(ejω)是其离散时间傅立叶变换,则(C)A.X(ejω)的幅度合幅角都是ω的偶函数B.X(ejω)的幅度是ω的奇函数,幅角是ω的偶函数C.X(ejω)的幅度是ω的偶函数,幅角是ω的奇函数D.X(ejω)的幅度合幅角都是ω的奇函数30.计算两个N1点和N2点序列的线性卷积,其中N1N2,至少要做(B)点的DFT。A.N1B.N1+N2-1C.N1+N2+1D.N231.y(n)+0.3y(n-1)=x(n)与y(n)=-0.2x(n)+x(n-1)是(C)。A.均为IIRB.均为FIRC.前者IIR,后者FIRD.前者FIR,后者IIR三.判断题1、在IIR数字滤波器的设计中,用脉冲响应不变法设计时,从模拟角频率向数字角频率转换时,转换关系是线性的。(√)2.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓。(√)3、x(n)=cos(w0n)所代表的序列一定是周期的。(×)4、y(n)=x2(n)+3所代表的系统是时不变系统。(√)5、用窗函数法设计FIR数字滤波器时,改变窗函数的类型可以改变过渡带的宽度。(√)6、有限长序列的N点DFT相当于该序列的z变换在单位圆上的N点等间隔取样。(√)7、一个线性时不变离散系统是因果系统的充分必要条件是:系统函数H(Z)的极点在单位圆内。(×)8、有限长序列的数字滤波器都具有严格的线性相位特性。(×)9、x(n),y(n)的线性卷积的长度是x(n),y(n)的各自长度之和。(×)10、用窗函数法进行FIR数字滤波器设计时,加窗会造成吉布斯效应。(√)11、用频率抽样法设计FIR数字滤波器时,12、在IIR数字滤波器的设计中,用双线性变换法设计时,从模拟角频率向数字角频率转换时,转换关系是线性的。(×)13.在频域中对频谱进行抽样,在时域中,所得抽样频谱所对应的序列是原序列的周期延拓。(√)14、有限长序列h(n)满足奇、偶对称条件时,则滤波器具有严格的线性相位特性。(√)15、y(n)=cos[x(n)]所代表的系统是线性系统。(×)16、x(n),y(n)的循环卷积的长度与x(n),y(n)的长度有关;x(n),y(n)的线性卷积的长度与x(n),y(n)的长度无关。(×)17、在N=8的时间抽取法FFT运算流图中,从x(n)到x(k)需3级蝶形运算过程。(√)18、用频率抽样法设计FIR数字滤波器时,基本思想是对理想数字滤波器的频谱作抽样,以此获得实际设计出的滤波器频谱的离散值。(√)19、用窗函数法设计FIR数字滤波器和用频率抽样法设计FIR数字滤波器的不同之处在于前者在时域中进行,后者在频域中进行。(√)20、用窗函数法设计FIR数字滤波器时,加大窗函数的长度可以减少过渡带的宽度,改变窗函数的种类可以改变阻带衰减。(√)21、一个线性时不变的离散系统,它是因果系统的充分必要条件是:系统函数H(Z)的极点在单位圆外。(×)22、一个线性时不变的离散系统,它是稳定系统的充分必要条件是:系统函数H(Z)的极点在单位圆内。(√)23.对正弦信号进行采样得到的正弦序列必定是周期序列。(×)24.常系数差分方程表示的系统必为线性移不变系统。(×)25.序列的傅里叶变换是周期函数。(√)26.因果稳定系统的系统函数的极点可能在单位圆外。(×)27.FIR滤波器较之IIR滤波器的最大优点是可以方便地实现线性相位。(√)28.用矩形窗设计FIR滤波器,增加长度N可改善通带波动和阻带衰减。(×)29.采样频率fs=5000Hz,DFT的长度为2000,其谱线间隔为2.5Hz。(√)三、计算题一、设序列x(n)={4,3,2,1},另一序列h(n)={1,1,1,1},n=0,1,2,3(1)试求线性卷积y(n)=x(n)*h(n)(2)试求6点循环卷积。(3)试求8点循环卷积。二.数字序列x(n)如图所示.画出下列每个序列时域序列:(1)x(n-2);(2)x(3-n);(3)x[((n-1))6],(0≤n≤5);(4)x[((-n-1))6],(0≤n≤5);n12340.543210-1-2-3x(3-n)x[((n-1))6]n54321043210.5n12340.5543210x[((-n-1))6]三.已知一稳定的LTI系统的H(z)为)21)(5.01()1(2)(111zzzzH试确定该系统H(z)的收敛域和脉冲响应h[n]。解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|0.5,0.5|z|2,|z|2因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5|z|211111213/25.013

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功