2.2.1对数与对数运算庄子的问题:一尺之棰,日取其半,万世不竭。(1)取4次,还有多长?(2)取多少次,还有0.125尺??125.0)21(xx记作:logaxN一、对数的定义:一般地,如果,那么数叫做以为底N的对数(0,1)xaNaaxa其中叫做对数的底数,N叫做真数a26,x1.082,x如何定义对数?观察二、两种特殊对数:1.常用对数:我们将以10为底的对数叫做常用对数,并记做.N10logNlg2.自然对数:无理数e=2.71828…,以e为底的对数称为自然对数,并记做Nelog.lnN三、指数式与对数式的互化logxaNxaN指数对数幂真数底数底数真数N的取值范围:),1()1,0(),0(),(对数的取值范围:x底数的取值范围:a负数和零没有对数理论迁移1.将下列指数式写成对数式(1)54=625(2)(3)(4)em=34=log5625m=ln3-2=lg(1/100)m=log(1/3)5.7373.5)31(m10011022.将下列对数式写成指数式(1)log16=-4(2)log2128=7(3)lg100.01=-2(4)ln10=2.30321128=270.01=10-210=e2.30316=-41()2642log3xlog84x例2.求下列各式中x的值:(2)(3)(4)(1)理论迁移xe2lnx100lg例3计算下列各式:(1)25log5(2)161log2(3)9log31125log5(4)学习探究探究任务:对数的性质()10aa且1logaaalognaalognaalog01nn幂的运算的三条法则:),0,0()()3(),,0()()2(),,0()1(RrbabaabRsraaaRsraaaarrrrssrsrsr【思考】由,如何探讨和、之间的关系?qpqpaaa)(logMNaMalogNalog探讨和、之间的关系?)(logMNaMalogNalog【思考】证明:①设,logpMa,logqNa由对数的定义可以得:,paMqaN∴MN=qpaqpMNalog即证得)(1NlogMlog(MN)logaaapaqa四、对数的运算法则:如果那么,且,0,01,0NMaaMnMNMNMNMNManaaaaaaaloglog)3(logloglog)2(loglog)(log)1(MnMNMNMNMNManaaaaaaaloglog)3(logloglog)2(loglog)(log)1(如果那么,且,0,01,0NMaa注意:对数运算的三条运算法则:对于上面的每一条运算法则,都要注意只有当式子中所有的对数符号都有意义时,等式才成立.对吗?请问:)5(log)3(log)]5()3[(log222例4:用表示下列各式:zyxaaalog,log,log32log)2(log)1(zyxzxyaa例5:计算下列各式:(1)(2)(3)五、其他重要公式:如果那么,且,0,01,0NMaaNmnNanamloglogaNNccalogloglogabbalog1log①③②(换底公式)(2)8log7log3log732计算:(3)27log9巩固练习:16log)1(2233log233log3332352log3log3532)2log35(3log322log3log3232532233(4)32log9log278例6:已知,,用表示.a3log2b7log356log42ba,12111212log3log2log3log7log2log27log6log7log8log7log42log56log56log323333333333342aababababaa上式解:小结:1°对数的定义2°互换(对数与指数会互化)3°对数的运算性质bye!