高考数学复习第二轮---重点难点专项突破14--数列综合应用问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

刘老师精品资料之高考数学第二轮---难点突破14难点14数列综合应用问题纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.●难点磁场(★★★★★)已知二次函数y=f(x)在x=22t处取得最小值-42t(t>0),f(1)=0.(1)求y=f(x)的表达式;(2)若任意实数x都满足等式f(x)·g(x)+anx+bn=xn+1[g(x)]为多项式,n∈N*),试用t表示an和bn;(3)设圆Cn的方程为(x-an)2+(y-bn)2=rn2,圆Cn与Cn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn、Sn.●案例探究[例1]从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41.(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?命题意图:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型,属★★★★★级题目.知识依托:本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.错解分析:(1)问an、bn实际上是两个数列的前n项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差.技巧与方法:正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.解:(1)第1年投入为800万元,第2年投入为800×(1-51)万元,…第n年投入为800×(1-51)n-1万元,所以,n年内的总投入为an=800+800×(1-51)+…+800×(1-51)n-1=nk1800×(1-51)k-1=4000×[1-(54)n]刘老师精品资料之高考数学第二轮---难点突破14第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41),…,第n年旅游业收入400×(1+41)n-1万元.所以,n年内的旅游业总收入为bn=400+400×(1+41)+…+400×(1+41)k-1=nk1400×(45)k-1.=1600×[(45)n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此bn-an>0,即:1600×[(45)n-1]-4000×[1-(54)n]>0,令x=(54)n,代入上式得:5x2-7x+2>0.解此不等式,得x<52,或x>1(舍去).即(54)n<52,由此得n≥5.∴至少经过5年,旅游业的总收入才能超过总投入.[例2]已知Sn=1+3121+…+n1,(n∈N*)设f(n)=S2n+1-Sn+1,试确定实数m的取值范围,使得对于一切大于1的自然数n,不等式:f(n)>[logm(m-1)]2-2011[log(m-1)m]2恒成立.命题意图:本题主要考查应用函数思想解决不等式、数列等问题,需较强的综合分析问题、解决问题的能力.属★★★★★级题目.知识依托:本题把函数、不等式恒成立等问题组合在一起,构思巧妙.错解分析:本题学生很容易求f(n)的和,但由于无法求和,故对不等式难以处理.技巧与方法:解决本题的关键是把f(n)(n∈N*)看作是n的函数,此时不等式的恒成立就转化为:函数f(n)的最小值大于[logm(m-1)]2-2011[log(m-1)m]2.解:∵Sn=1+3121+…+n1.(n∈N*)0)421321()421221(42232122121321221)()1(1213121)(112nnnnnnnnnnnfnfnnnSSnfnn又∴f(n+1)>f(n)∴f(n)是关于n的增函数∴f(n)min=f(2)=209321221∴要使一切大于1的自然数n,不等式f(n)>[logm(m-1)]2-2011[log(m-1)m]2恒成立只要209>[logm(m-1)]2-2011[log(m-1)m]2成立即可刘老师精品资料之高考数学第二轮---难点突破14由11,011,0mmmm得m>1且m≠2此时设[logm(m-1)]2=t则t>0于是02011209tt解得0<t<1由此得0<[logm(m-1)]2<1解得m>251且m≠2.●锦囊妙计1.解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题.2.纵观近几年高考应用题看,解决一个应用题,重点过三关:(1)事理关:需要读懂题意,明确问题的实际背景,即需要一定的阅读能力.(2)文理关:需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系.(3)事理关:在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化.构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力.●歼灭难点训练一、选择题1.(★★★★★)已知二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,…,n,…时,其抛物线在x轴上截得的线段长依次为d1,d2,…,dn,…,则limn(d1+d2+…+dn)的值是()A.1B.2C.3D.4二、填空题2.(★★★★★)在直角坐标系中,O是坐标原点,P1(x1,y1)、P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是_________.3.(★★★★)从盛满a升酒精的容器里倒出b升,然后再用水加满,再倒出b升,再用水加满;这样倒了n次,则容器中有纯酒精_________升.4.(★★★★★)据2000年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%,”如果“十·五”期间(2001年~2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为_________亿元.三、解答题5.(★★★★★)已知数列{an}满足条件:a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n=1,2,…).(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范围;(2)求bn和nnS1lim,其中Sn=b1+b2+…+bn;刘老师精品资料之高考数学第二轮---难点突破14(3)设r=219.2-1,q=21,求数列{nnbb212loglog}的最大项和最小项的值.6.(★★★★★)某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金nb元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.(1)设ak(1≤k≤n)为第k位职工所得奖金金额,试求a2,a3,并用k、n和b表示ak(不必证明);(2)证明ak>ak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;(3)发展基金与n和b有关,记为Pn(b),对常数b,当n变化时,求limnPn(b).7.(★★★★)据有关资料,1995年我国工业废弃垃圾达到7.4×108吨,占地562.4平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石20吨,设环保部门1996年回收10万吨废旧物资,计划以后每年递增20%的回收量,试问:(1)2001年回收废旧物资多少吨?(2)从1996年至2001年可节约开采矿石多少吨(精确到万吨)?(3)从1996年至2001年可节约多少平方公里土地?8.(★★★★★)已知点的序列An(xn,0),n∈N,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,…,An是线段An-2An-1的中点,….(1)写出xn与xn-1、xn-2之间关系式(n≥3);(2)设an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明;(3)求limnxn.参考答案难点磁场解:(1)设f(x)=a(x-22t)2-42t,由f(1)=0得a=1.∴f(x)=x2-(t+2)x+t+1.(2)将f(x)=(x-1)[x-(t+1)]代入已知得:(x-1)[x-(t+1)]g(x)+anx+bn=xn+1,上式对任意的x∈R都成立,取x=1和x=t+1分别代入上式得:1)1()1(1nnnnntbatba且t≠0,解得an=t1[(t+1)n+1-1],bn=tt1[1-(t+1]n)(3)由于圆的方程为(x-an)2+(y-bn)2=rn2,又由(2)知an+bn=1,故圆Cn的圆心On在直线x+y=1上,又圆Cn与圆Cn+1相切,故有rn+rn+1=2|an+1-an|=2(t+1)n+1设{rn}的公比为q,则①②刘老师精品资料之高考数学第二轮---难点突破142111)1(2)1(2nnnnnntqrrtqrr②÷①得q=nnrr1=t+1,代入①得rn=2)1(21ttn∴Sn=π(r12+r22+…+rn2)=342221)2()1(21)1(tttqqrn[(t+1)2n-1]歼灭难点训练一、1.解析:当a=n时y=n(n+1)x2-(2n+1)x+1由|x1-x2|=a,得dn=)1(1nn,∴d1+d2+…+dn1)111(lim)(lim1111113121211)1(132121121ndddnnnnnnnn答案:A二、2.解析:由1,x1,x2,4依次成等差数列得:2x1=x2+1,x1+x2=5解得x1=2,x2=3.又由1,y1,y2,8依次成等比数列,得y12=y2,y1y2=8,解得y1=2,y2=4,∴P1(2,2),P2(3,4).∴21),2,2(OPOP=(3,4)∴,5||,22,14862121OPOPOPOP110252221sin||||21102sin,102722514||||cos21212121212121OPPOPOPSOPPOPOPOPOPOPPPOP答案:13.解析:第一次容器中有纯酒精a-b即a(1-ab)升,第二次有纯酒精a(1-ab)-baaba)1(,即a(1-ab)2升,故第n次有纯酒精a(1-ab)n升.答案:a(1-ab)n4.解析:从2001年到2005年每年的国内生产总值构成以95933为首项,以7.3%为公比的等比数列,∴a5=95933(1+7.3%)4≈120000(亿元).答案:120000三、5.解:(1)由题意得rqn-1+rqn>rqn+1.由题设r>0,q>0,故从上式可得:q

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功