高等数学偏导数第四节复合函数求导法则题库

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

【090401】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设ztsts,其中txysxy33,,求zx。【试题答案及评分标准】解:zxtstststststs3322()()()()()()(7分)262tsts()(10分)【090402】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zxyxyln(())21,求xz。【试题答案及评分标准】解:zxyxyxyxyx111122()()(7分)112()xy(10分)【090403】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zxyyxyyln[()]21,求yz。【试题答案及评分标准】解:zxyyxyyxxxyyxyyy1111122()()()()()(7分)xxyy112()(10分)【090404】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zxyyxyyln[()]21,求xz。【试题答案及评分标准】解:zxyyxyyyyxyyxyyx11122()()()(7分)yxyy()21(10分)【090405】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zxyyexarctan,()112,求ddzx。【试题答案及评分标准】解:dd()()ddzxyyxyxyxy222211(8分)yxyx[()]()1211222(10分)【090406】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设uxyzxryrzr222,cossin,sinsin,cos求uruu,,。【试题答案及评分标准】解:urxyzr2222cossinsinsincos(4分)uxryr220[(sin)sin](cossin)(7分)uxryrr220(coscos)(sincos)sin(10分)【090407】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zexy32,而xtytcos,2,求ddzt。【试题答案及评分标准】解:dd(sin)()ztetetxyxy3223232(8分)(sin)3432ttexy(10分)【090408】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zyxy(sin),求zy。【试题答案及评分标准】解:zyxyxyyxxyyy(sin)ln(sin)(sin)sin1(sin)[ln(sin)]yxyxy1(8分)或ln[lnlnsin]zyyx(10分)zzyxy[ln(sin)]1(6分)(sin)[ln(sin)]yxyxy1(10分)【090409】【计算题】【中等0.5】【多元复合函数的求导法则】【全微分】【试题内容】设uxyyz,求du。【试题答案及评分标准】解:dlndduxyxyyzyzxyxyyzyz1(4分)xyxyzyyzzyxzyxxyyyzlndddd222(8分)xyxzyzxxzxyxzyxyxyzyz12dlndlnd(10分)【090410】【计算题】【中等0.5】【多元复合函数的求导法则】【全微分】【试题内容】3,),sin(23systxyxezxy,求z对ts,的全微分dz。【试题答案及评分标准】解:d(dd)cos()(dd)zexyyxxyxyxy(3分)exssysttstsxysttstsssxy3222223222dddcos()ddd(7分)ssstyxystsxexyd23)cos(2322tyxetsxyd)cos(21【090411】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zxeyuvuyvxuv222232()sinln(),cos,arctan(),求z对yx,的全微分dz。【试题答案及评分标准】解:ddd()cosln()d()()zxexxeuvyuvyuvuv22322222sind()yuvuv232322(6分)21214623142222xexuvxyuvxxuv()()sin()()dxuveyyuyyyuvyuv222223()sinsinsin()d()cosln()dyuvy232(10分)【090412】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zyxytan1,求dz。【试题答案及评分标准】解:zyyxyxyxxyxyxxyy1111222112tansectansec(4分)zxyyxyxyyxyxyyy1111221tansectanlntan(8分)dtansecdsectanlntandzyxxyxxxyyxyyxyxyy112222111(10分)【090413】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设vuezvuarctan)ln(22,求zuzv,。【试题答案及评分标准】解:zuuvuvvuvu2222arctan(5分)zvuvuvuuvv2222arctan(10分)【090414】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zxy2ln,而xuvyuv,3,求zuzv,。【试题答案及评分标准】解:zuxyvxyxvyxy2132322lnln(5分)zvxyuvxyxuvyxy222222lnln(10分)【090415】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zxyxysec()ln()21,求dz。【试题答案及评分标准】解:d[ln()]dsec()sec()dln()[ln()]zxyxyxyxyxy111222(4分)11121222[ln()][ln()sec()tan()(dd)sec()(dd)]xyxyxyxyyxxyxyxyyxxy[ln()tan()()]()()cos()ln()21111122xyxyxyydxxdyxyxyxy(10分)【090416】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zefxyxy2(,),函数fxy(,)有一阶连续偏导数,求dz。【试题答案及评分标准】解:d(,)dd(,)(,)(dd)(dd)zfxyeefxyfxyexyefxfyxyxyxyxyxy22222()d()d222zfexzfeyxxyyxy(10分)【090417】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zyxyxln(),求zxzy,。【试题答案及评分标准】解:zyyxyxyxxxlnln1(5分)zxyxyyyyxx11ln()(10分)【090418】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zxyyxyarctan,求zxzy,。【试题答案及评分标准】解:zyxyyyxyxyxy122arctan(ln)(5分)设uyuxyyxyarctan,lnarctanlnuyuxyxyyyxyyxyxyxyyxy2222211lnarctanlnarctanarctanzxxyxyxyxyyyyxylnlnarctanarctan22(10分)【090419】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】zuexuxuvxvarctan()(),1422,求对vu,的全微分dz。【试题答案及评分标准】解:zueuuvuvvarctan()()233214(2分)d()ddd()zeueuvuuvvuvuvvuvv23222322311231432223234uuvuuvvuuvddd()(10分)【090420】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设uxyzxyz(,,)1222,求xyu。【试题答案及评分标准】解:记rxyz222,则ur1uxrx3(3分)uxyrxyxyzxy33522252()/(10分)【090421】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】zuuvuevxyvxycot(),,22,求z对yx,的全微分zd。【试题答案及评分标准】解:zuuvuevxyvxycot(),,22zexyexyxy3322cot()(2分)dddcsc()dzexyxxyyxyexyexyxyxy3322332332222exyxxyyxyeyxexyexxeyexyyxyxyxyxyxyxy33222223322233222222ddcsc()[dd](7分)323122322232222233223322xyexyexyxyexxyexexyxyeyxyxyxyxyxyxy()csc()d()csc()d(10分)【090422】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设zexyxysinarctan(),求zxzy,。【试题答案及评分标准】解:zyexyyexyxxyxysinarctan()sinsin122(5分)zexyxyxexyyxyxysinsincosarctan()122(10分)【090423】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设)cos(111arcsinzxyzxyezyxu,求ux。【试题答案及评分标准】解:设sxyztxyyzzx111,则uxsxetyzt11122cossin()(8分)1122xsyzett()sincos(10分)【090424】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设uxyarctan(),其中xstyst23

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功