2018版高考数学(理)(人教)大一轮复习讲义第十二章概率随机变量及其分布12.1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§12.1随机事件的概率基础知识自主学习课时作业题型分类深度剖析内容索引基础知识自主学习1.概率和频率知识梳理(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的,称事件A出现的比例fn(A)=___为事件A出现的.(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个称为随机事件A的概率,记作P(A).频数频率频率常数nAn2.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B事件A(或称事件A包含于事件B)______________相等关系若B⊇A且A⊇B_______并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的(或和事件)A∪B(或A+B)包含B⊇A(或A⊆B)A=B并事件交事件(积事件)若某事件发生当且仅当且,则称此事件为事件A与事件B的(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B__________________________事件A发生事件B发生交事件互为对立事件P(A)+P(B)=13.概率的几个基本性质(1)概率的取值范围:.(2)必然事件的概率P(E)=.(3)不可能事件的概率P(F)=.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=.(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=.0≤P(A)≤110P(A)+P(B)1-P(B)互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.知识拓展判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.()(2)随机事件和随机试验是一回事.()(3)在大量重复试验中,概率是频率的稳定值.()(4)两个事件的和事件是指两个事件都得发生.()(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.()(6)两互斥事件的概率和为1.()思考辨析××√×√×考点自测1.从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则ba的概率是答案解析基本事件的个数有5×3=15,所以ba的概率为315=15.其中满足ba的有3种,A.45B.35C.25D.152.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是答案解析A.必然事件B.随机事件C.不可能事件D.无法确定抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.3.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175cm的概率为答案解析A.0.2B.0.3C.0.7D.0.8因为必然事件发生的概率是1,所以该同学的身高超过175cm的概率为1-0.2-0.5=0.3,故选B.4.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为答案解析A.0.5B.0.3C.0.6D.0.9依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.5.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.答案解析①是互斥不对立的事件,②是对立事件,③④不是互斥事件.②题型分类深度剖析题型一事件关系的判断例1(1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是A.①B.②④C.③D.①③答案解析(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案解析若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A,B不是对立事件.(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.“2张全是移动卡”的概率是310,那么概率是710的事件是答案解析A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡(1)准确把握互斥事件与对立事件的概念①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.思维升华跟踪训练1从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有A.0组B.1组C.2组D.3组答案解析题型二随机事件的频率与概率例2(2016·全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:上年度出险次数01234≥5保费0.85aa1.25a1.5a1.75a2a(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;解答出险次数01234≥5频数605030302010事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;解答事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)求续保人本年度的平均保费的估计值.解答由所给数据得调查的200名续保人的平均保费为保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.050.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.1925a.因此,续保人本年度平均保费的估计值为1.1925a.(1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.思维升华b^跟踪训练2(2015·北京)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××解答(1)估计顾客同时购买乙和丙的概率;从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.解答(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3.(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解答顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,与(1)同理,可得:顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.题型三互斥事件、对立事件的概率命题点1互斥事件的概率例3袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、黄球和绿球的概率各是多少?解答13512512命题点2对立事件的概率例4某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);解答P(A)=11000,P(B)=101000=1100,P(C)=501000=120.故事件A,B,C的概率分别为11000,1100,120.(2)1张奖券的中奖概率;解答=1+10+501000=611000.1张奖券中奖包含中特等奖,一等奖,二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)故1张奖券的中奖概率为611000.(3)1张奖券不中特等奖且不中一等奖的概率.解答∴P(N)=1-P(A∪B)=1-11000+1100=9891000.设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,故1张奖券不中特等奖且不中一等奖的概率为9891000.求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法:(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.思维升华跟踪训练3经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:解答排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.典例(12分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.用正难则反思想求互斥事件的概率思想与方法系列25一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均数;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)思想方法指导规范解答若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”

1 / 54
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功