第8章整式的乘法与因式分解(复习)七(1)是我家,我爱我家!本章知识结构:一、整式的运算(一)整式的乘法1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式1、单项式除以单项式2、多项式除以单项式(二)整式的除法你回忆起了吗?就这些知识1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。数学符号表示:(其中m、n为正整数)nmnmaaa(一)整式的乘法练习:判断下列各式是否正确。6623222844333)()()()(2,,2xxxxxmmmbbbaaa2、幂的乘方法则:幂的乘方,底数不变,指数相乘。数学符号表示:mnnmaa)((其中m、n为正整数)练习:判断下列各式是否正确。2244241222443243284444)()()(,)(])[(,)(mmmnnaaaxxbbbaaamnppnmaa])[((其中m、n、P为正整数)3、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。符号表示:)()(),(,)(为正整数其中为正整数其中ncbaabcnbaabnnnnnnn练习:计算下列各式。32332324)(,)2(,)21(,)2(baxybaxyz4.单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。•法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(a+b)(m+n)=am+an+bm+bn(a+b)(m+n)=a(m+n)+b(m+na(m+n)+b(m+n)5.多项式与多项式相乘:=am+an+bm+bn(1)、平方差公式即两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫(乘法的)平方差公式.,,))((22也可以是代数式既可以是数其中babababa说明:平方差公式是根据多项式乘以多项式得到的,它是两个数的和与同样的两个数的差的积的形式。6.乘法公式:一般的,我们有:(2)、完全平方公式法则:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。.,,2)(;2)(222222也可以是代数式既可以是数其中bababababababa2222)(:bababa即一般的,我们有:注意:•(1)(a-b)=-(b-a)•(2)(a-b)2=(b-a)2•(3)(-a-b)2=(a+b)2•(4)(a-b)3=-(b-a)3(1)、同底数幂的除法即:同底数幂相除,底数不变,指数相减。一般地,我们有nmnmaaa(其中a≠0,m、n为正整数,并且m>n))0(10aa7.整式的除法:即任何不等于0的数的0次幂都等于1(2)、单项式除以单项式法则:单项式除以单项式,把它们的系数、同底数幂分别相除作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。(3)、多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。22219992001)6(,1999)5()23)(23)(4(zyxzyx?,2)()3(.,1,2)2(.)1(,51)1(222222222应为多少则如果的值求若的值求已知znmnmznmxyyxyxaaaa练习:计算下列各题。)5.0()4331)4()6()645)(3(])(31[)(6)2()2()41)(1(21231221223233225346yxyxyxyx(xxyxyxbabacacbammmnm分解因式定义把一个多项式化成几个整式的积的形式,象这样的式子变形叫做把这个多项式因式分解或分解因式。与整式乘法的关系:互为逆过程,互逆关系方法提公因式法公式法步骤一提:提公因式二用:运用公式三查:检查多项式因式是否能再分解(彻底性);检查因式分解的是否正确(正确性)。平方差公式a2-b2=(a+b)(a-b)完全平方公式a2±2ab+b2=(a±b)2九.(1).公因式:一个多项式的各项都含有的公共的因式,叫做这个多项式各项的公因式(2)找公因式:找各项系数的最大公约数与各项都含有的字母的最低次幂的积。(3).提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,作为多项式的一个因式,然后用原多项式的每一项除以这个公因式,所得的商作为另一个因式,将多项式写成因式乘积的形式,这种因式分解的方法提公因式法。1、利用因式分解计算:(1)(2)(1-)(1-)(1-)…(1-)(3)20042-4008×2005+20052(4)9.92-9.9×0.2+0.012220012003100122123124121012、若a、b、c为△ABC的三边,且满足a2+b2+c2=ab+ac+bc,试判断△ABC的形状。(2)21232yxyxxmmm3.分解因式:(1).110252xyyx(3)22222)(4baba1)2()2()2()2()2()2)(4(231997199819991求证:(n2+3n+1)2-1是连续四个整数的积(其中n为整数)3.已知:a+b=-3,ab=-4,求多项式a2+a2b+ab2+b2的值.4已知:(a+b)(x+y)=2(ax+by),求证:a=b或x=y.