常见数列大题收集1.已知等差数列{}na的前n项和nS满足30S,55S。(Ⅰ)求{}na的通项公式;(公式法)(Ⅱ)求数列21211{}nnaa的前n项和。(裂项法)1.(1)设{an}的公差为d,则Sn=1(1)2nnnad。由已知可得111330,1,1.5105,adadad解得n=2-.naan故的通项公式为(2)由(I)知212111111(),(32)(12)22321nnaannnn从而数列21211nnnaa的前项和为1111111-+-++)2-1113232112nnnn(.2.在等比数列}{na中,*)(0Nnan,公比1q,1002534231aaaaaa,且4是2a与4a的等比中项,⑴求数列}{na的通项公式;(公式法)⑵设nnnaab22log,求数列}{nb的前n项和nS,(分组求和法)解:(1)设等比数列{}na的公比为q,则11nnaaq,由已知得82,8,2101610164,10,0,100)(23114224224242242534231qaqaaaqxxaaaaaaaaaaaaaaan即的两根,为方程、,又则又……………………………4分解得112aq12nna.……………………………7分(2)由(1)知,212log4(1)nnnnbaan21(1444)(1231)(1)4132nnnTnnn……………………………12分3.数列{an}的前n项和nS2n,数列{nb}满足112,32nannbbb。(Ⅰ)求数列{na},{nb}的通项公式;(公式法,累加法)(Ⅱ)若*212log()nnncbnN,nT为{nc}的前n和,求nT。(错位相减法)3.解:(1)2121,2nnnanb(6分)(Ⅱ)21222log(21)2nnnncn2123252(21)2nnnTcccn(8分)23123252(21)2(21)2nnnTnn,两式相减得:231322(222)(21)2nnnTn23112222(21)2nnn1112(21)(21)2(21)22nnnnn1(21)22nnTn(12分)4.已知数列{}na满足:212123(31),*8nnnnNaaa.(I)求数列{}na的通项公式;(迭代法)(II)设3lognnabn,求12231111.nnbbbbbb(裂项法)4解:(Ⅰ)1a1=38(32-1)=3,…1分当n≥2时,∵nan=(1a1+2a2+…+nan)-(1a1+2a2+…+n-1an-1)=38(32n-1)-38(32n-2-1)=32n-1,…5分当n=1,nan=32n-1也成立,所以an=n32n-1.…6分(Ⅱ)bn=log3ann=-(2n-1),…7分1bnbn+1=1(2n-1)(2n+1)=12(12n-1-12n+1),∴1b1b2+1b2b3+…+1bnbn+1=12[(1-13)+(13-15)+…+(12n-1-12n+1)]…10分=12(1-12n+1)=n2n+1.5.在数列{}na中,11a,22112nanann(1)求数列{}na的通项公式;(公式法)(2)令112nnnbaa,求数列{}nb的前n项和nS.(错位相减法)5.(1)122nnna分4②nnnS2525分126.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))在公差为d的等差数列}{na中,已知101a,且3215,22,aaa成等比数列.(1)求nad,;(2)若0d,求.||||||||321naaaa【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)aaaadaddd224112122125253404611nndddddddanan或(Ⅱ)由(1)知,当0d时,11nan,①当111n时,123123(1011)(21)0||||||||22nnnnnnnaaaaaaaaa②当12n时,1231231112132123111230||||||||()11(2111)(21)212202()()2222nnnnaaaaaaaaaaaannnnaaaaaaaa所以,综上所述:1232(21),(111)2||||||||21220,(12)2nnnnaaaannn7.记等差数列na的前n项和为nS,设312S,且1232,,1aaa成等比数列,求nS.解析:设na的公差为d,则.5.u.21321232112aaaaaa,即2211112204adadaad,解得111,83,4aadd或因此223110222nnSnnSnn,或8.已知等差数列{na}中,,0,166473aaaa求{na}前n项和nS..w.w.k.s.5.u.c解析:设na的公差为d,则.5.u.11112616350adadadad,即22111812164adadad,解得118,82,2aadd或因此819819nnSnnnnnSnnnnn,或9.设等差数列na满足35a,109a。(Ⅰ)求na的通项公式;(Ⅱ)求na的前n项和nS及使得nS最大的序号n的值。解析:(Ⅰ)35a,109a得112599adad,解得192ad,数列na的通项公式为112nan(Ⅱ)由(Ⅰ)知22110(5)25(1)2nSnadnnnnn.,则5n时,nS取得最大值。10.等比数列na的前n项和为nS,已知1S,3S,2S成等差数列(Ⅰ)求na的公比q;(Ⅱ)求133aa,求nSw.w.w.k.s.5.u.c.o.m解:(Ⅰ)依题意有w.o.)(2)(2111111qaqaaqaaa,由于01a,故022qq,又0q,从而21-q(Ⅱ)由已知可得321211)(aa,故41a,从而))(()())((nnn211382112114S10分11.设{}na是公比大于1的等比数列,nS为数列{}na的前n项和.已知37S,且123334aaa,,构成等差数列.(1)求数列{}na的等差数列.(2)令31ln12nnban,,,,求数列{}nb的前n项和T.解:(1)由已知得12321327:2(3)(4)32aaaaaaa,设数列{}na的公比为q,由22a,可得1322aaqq,.又37S,可知2227qq,即22520qq,解得12122qq,.由题意得12qq,.11a.故数列{}na的通项为12nna.(2)由于31ln12nnban,,,,由(1)得3312nna,3ln23ln2nnbn又13ln2nnbb,{}nb是等差数列.12nnTbbb1()(3ln23ln2)3(1)ln2222nnbbnnnn故3(1)ln22nnnT.12.【2012高考浙江文19】(本题满分14分)已知数列{an}的前n项和为Sn,且Sn=22nn,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡.(1)求an,bn;(2)求数列{an·bn}的前n项和Tn.【解析】(1)由Sn=22nn,得当n=1时,113aS;当n2时,1nnnaSS2222(1)(1)41nnnnn,n∈N﹡.由an=4log2bn+3,得21nbn,n∈N﹡.(2)由(1)知1(41)2nnnabn,n∈N﹡所以21372112...412nnTn,2323272112...412nnTn,212412[34(22...2)]nnnnTTn(45)25nn(45)25nnTn,n∈N﹡.13.【2012高考重庆文16】(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分))已知{}na为等差数列,且13248,12,aaaa(Ⅰ)求数列{}na的通项公式;(Ⅱ)记{}na的前n项和为nS,若12,,kkaaS成等比数列,求正整数k的值。【解析】(Ⅰ)设数列{}na的公差为d,由题意知112282412adad解得12,2ad所以1(1)22(1)2naandnn(Ⅱ)由(Ⅰ)可得1()(22)(1)22nnaannnSnn因12,,kkaaS成等比数列,所以212kkaaS从而2(2)2(2)(3)kkk,即2560kk解得6k或1k(舍去),因此6k。14.}{na数列中,若),(411,211Nnaaann求annnnnbbab1,1则设+4,即nnbb1=4,nb{}是等差数列。15.数列{an}中,,22,111nnnaaaa求an通项公式16正数数列{an}中,若nnnaNnaaa求),(4,52211解:设4,4,112nnnnnnbbbbab即则),71(,429429429)4()1(25254}{2211Nnnnanannbabbnnnn即,是等差数列,公差是数列16.数列{an}中,若a1=6,an+1=2an+1,求数列{an}的通项公式。解:an+1+1=2an+2,即an+1+1=2(an+1)设bn=an+1,则bn=2bn-1则数列{bn}是等比数列,公比是2,首项b1=a1+1=7,11271,27nnnnab即1271nna,)(Nn构造此种数列,往往它的递推公式形如:的形式和2)1(,1naScdacannnn。如:an+1=can+d,设可化成an+1+x=c(an+x),an+1=can+(c-1)x用待定系数法得:(c-1)x=d∴x=1cd.17.数列{an}满足Sn+an=2n+1,求an18.数列{an}中,若a1=1,a2=3,an+2+4an+1-5an=0(nN),求an。解:an+2+4an+1-5an=0得:an+2-an+1=-5(an+1-an)设bn=an+1-an,则数列{bn}是等比数列,公比是-5,首项b1=a2-a1=2,∴an+1-an=2•(-5)n-1即a2-a1=2•(-5)a3-a2=2•(-5)2a4-a3=2•(-5)3┄an-an-1=2•(-5)n-2以上各式相加得:an-a1=2•[(-5)+(-5)2+(-5)3+┄+(-5)n-1]即:an-a1=2•)5(1511n)(3)5(111nna,即3)5(41nna,(n)N练习:(1)数列{an}中,若a1=1,an+1-an=2n,求通项an.(2)数列{an}中,若a1=1,an+1-a