北师大版小学数学五年级下册知识点整理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

北师大版小学数学五年级(下册)知识点分数的加法和减法知识要点一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。二、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。③由整数部分和分数部分组成的分数叫做带分数。2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。三、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。2、分数的大小比较:③同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。③异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化)四、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几„„,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。)3、分数和小数比较大小:一般把分数变成小数后比较更简便。六、分数的加法和减法1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。(4)结果要是最简分数2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。3、(1)同分母分数加、减法①同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减。②计算的结果,能约分的要约成最简分数。(2)异分母分数加、减法①分母不同,也就是分数单位不同,不能直接相加、减。②异分母分数的加减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。(3)分数加减混合运算①分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。②整数加法的交换律、结合律对分数加法同样适用。《长方体(一)》一、长方体的认识知识点:1、认识长方体、正方体,了解各部分的名称。(1)表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。(2)左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。(3)长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等,叫棱长。2、长方体、正方体各自的特点长方体有6个面,每个面都是长方形,相对的两个面完全相同;有8个顶点;有12条棱,12条棱分成3组,每组4条棱一样长。同一个顶点的3条棱分别代表长方体的长、宽、高。当长方体有一组相对的面是正方形时,它的另外4个面是完全相同的长方形,此时它有8条棱一样长。正方体是特殊的长方体。长、宽、高相等的长方体就是正方体。正方体有6面,是完全一样的正方形;8个顶点;12条棱一样长。(面面相等、棱棱相等)2、长方体、正方体各自的特点。顶点面棱个数个数形状大小关系条数长度关系86都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形。相对的面是完全一样的长方形。12可以分为三组,相对的棱平行且相等。86都是正方形。每个面是正方形。12长度都相等。3、正方体是特殊的长方体,又叫立方体。4、能计算长方体、正方体的棱长总和;知道棱长总和,会求长、宽、高。长方体的棱长总和=(长+宽+高)×4,或者:长方体的棱长总和=长×4+宽×4+高×4L=(a+b+h)×4或者:L=a×4+b×4+c×4.长方体的长=棱长总和÷4-(宽+高)a=L÷4-(b+h)长方体的宽=棱长总和÷4-(长+高)b=L÷4-(a+h)长方体的高=棱长总和÷4-(长+宽)h=L÷4-(a+b)正方体的棱长总和=棱长×12L=12a正方体的棱长=棱长总和÷12a=L÷12二、展开与折叠知识点:1、认识并了解长方体和正方体的平面展开图。2、了解正方体平面展开图的几种形式,并以此来判断。一、正方体表面展开图的三种情况1、正方体展开后有四个面在同一层正方体因为有两个面必须作为底面,所以平面展开图中,最多有四个面展开后处在同一层,作为底的两个面只能处在四个面这一层的两侧,利用排列组合知识可得如下六种情况:2、正方体展开后有三个面在同一层有三个面在同一层,剩下的三个面分别在两侧,有如下三种情形:3、二面三行,象楼梯;三面二行,两台阶三、长方体的表面积1、理解表面积的意义:长方体的表面积是指六个面的面积之和。2、长方体和正方体表面积的计算方法。上面=下面=长×宽前面=后面=长×高左面=右面=宽×高长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×23.正方体的表面积=棱长×棱长×6S=6a²4.把一个正方体截成两个长方体,两个长方体的表面积之和比原来的正方体的表面积增大了,增大了原来正方体的两个面的面积。把两个正方体拼成一个长方体,长方体的表面积比原来两个正方体的表面积之和减少了,减少了原来正方体的两个面的面积。四、露在外面的面1、在观察中,通过不同的观察策略进行观察。如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。分数乘法(一)知识点:1、理解分数乘整数的意义:数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。3、计算时,应该先约分再计算。分数乘法(二)知识点:1、整数乘分数的意义:求一个数的几分之几是多少。2、理解打折的含义。例如:九折,是指现价是原价的十分之九。补充知识点:打几几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。分数乘法(三)知识点:1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(计算结果要求是最简分数。)2、比较分数相乘的积与每一个乘数的大小:真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。《分数除法》一、倒数1、发现倒数的特征并理解倒数的意义。乘积是1的两个数,叫互为倒数。那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。2、求倒数的方法。(1)真分数和假分数的倒数:把这个数的分子和分母调换位置。(2)大于1的整数的倒数:就是这个整数分之一。(3)1的倒数仍是1;(4)0没有倒数。是因为0乘以任何数都不等于1。在分数中,0不能做分母。(5)找小数的倒数要把小数化成分数,在找它的倒数。也可以用1除以这个小数,得出这个小数的倒数。(6)找带分数的倒数,先把带分数化成假分数,在找它的倒数。二、分数除法(一)1、分数除以整数的意义分数除以整数,就是把这个分数平均分成几份,求每一份是多少。2计算方法。分数除以整数(0除外)等于乘这个整数的倒数。ba÷m=ba×1m=bam分数除法(二)1、一个数除以分数的意义和基本算理。一个数除以分数的意义:一个数m包含几个ba,用除法:m÷ba2、掌握一个数除以分数的计算方法:除以一个分数,等于乘以这个分数的倒数。总结:除以一个数(0除外)等于乘这个数的倒数。3、比较商与被除数的大小。除数小于1,商大于被除数;除数等于1。商等于被除数;除数大于1,商小于被除数。分数除法(三)1、已知一个数的几分之几是多少,求这个数,用除法。一个数的ba是m,求这个数。(1)列算式:m÷ba(2)利用方程解决:先找等量关系式:一个数×ba=m解:设这个数为xba×x=mx=m÷ba知识点:1、列方程“求一个数的几分之几是多少”的方法:(1)、解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程。(2)、算术方法:用部分量除以它所占整体的几分之几(对应量÷对应分率=标准量)判断单位“1”①一般来说,某个数的几分之几,“某个数”就是单位“1”②数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1”③谁是谁的几分之几,“是”字后面的数量就是单位“1”3、理解打折的含义:“打折”指的是现价是原价的十分之几或百分之几十,把原价看成单位“1”如:打8折就是指现价是原价的十分之八打八五折就是指现价是原价的百分之八十五程知识点归纳总结1、小数乘整数的意义——求几个相同加数的和的简便运算。如1:3χ表示χ的3倍是多少或3个χ的和的简便运算。如2:1.5χ表示χ的1.5倍是多少或1.5个χ的和的简便运算。2、在乘法里:一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。(这叫做积不变性质)3、在除法里:被除数和除数同时扩大(或缩小)相同的倍数,商的大小不变。(这叫做商不变性质)4.乘法分配律:a×(b±c)=a×b±a×c5、在含有字母的式子里,字母中间的乘号可以简记“·”,也可以省略不写。(注意:加号、减号、除号以及数与数之间的乘号不能省略。字母与数字相乘简写时,数字写在字母前面。)6、a×a可以写作a·a或a²,a²读作a的平方或a的二次方。2a表示a+a7、方程:含有未知数的等式称为方程。(所有的方程都是等式,但等式不一定都是等式。)使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。(方程的解是一个数;解方程是一个计算过程。)8、解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。9、加、减、乘、除运算数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数被减数=差+减数减数=被减数乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商解方程的方法:方法一:利用天平平衡原理(即等式的性质)解方程;方法二:利用加、减、乘、除运算数量关系解方程。常用数量关系式:路程=(速度)×(时间)速度=(路程)÷(时间)时间=(路程)÷(速度)总价=(单价)×(数量)单价=(总价)÷(数量)数量=(总价)÷(单价)总产量=(单产量)×(数量)单产量=(总产量)÷(数量)数量=(总产量)÷(单价)大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量×倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数分数应用题的解题方法:(分率就是几分之几)题型1:商店卖出的苹果6千克,卖出的苹果比橘子多二分之一,求卖出橘子多少千克?【解题思路】第一步:找单位“1”该题中:单位“1”是“比”字后面的东西——橘子数量。第二步:判断单位“1”已知还是未知?已知用乘,未知用除。如果单位“1”已知,就用乘法解,用单位“1”的量乘以谁的分率就算谁的具体量。如果单位“1”未知,说明题目是求单位“1”的量。要用除法或者列X方程计算单位“1”的量,用已知量除以它对应的分率。该题中:单位“1”橘子数量未知,是题目要求出的数量,用除法,把已知量苹果作为被除数。第三步:某物比单位“1”多几分之几就写:(1+分数),;某物比单位“1”少几分之几就写:(1-分数),或说减少了几分之几。该题中:苹果比橘子多12,也就是苹果

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功