微热管及其传热理论分析摘要:随着微电子制造技术的快速发展,微热管在航天器热控系统、微电子元器件散热等领域中有着广泛的应用。微热管是利用密封在管内工质相变进行热量传输的器件,具有体积小、重量轻、传热效率高、成本低、易于集成、无需外加动力等显著优点,能有效解决目前微小型器件和芯片的散热问题,具有广泛的应用前景。作者综述了微热管的发展与当前研究现状,详细介绍了微热管的工作原理,并指出微热管与常规微热管的区别,对槽道式平板微热管进行理论分析,最后展望了该领域的未来研究方向。关键词:微热管,工作原理,平板微热管,引言随着电子科技技术的进步,许多电子产品向着高性能化、高功率化和小型化方向发展,同时产品的高集成度使其散热空间更为狭小,导致了电子元器件单位面积的热量急剧上升,如高性能微处理器的热流密度已达到100W/cm2[1]。元器件的温度每升高10℃,系统的可靠性降低50%[2],所以必须采用高效的传热技术对电子元器件进行散热。微热管是一种利用相变传热的高效传热元件,其导热能力大大超越了铜、铝材料的空气强制对流散热方案[3-4],因此,具有高导热率、良好的等温性,以及结构简单等优点[1,5]的微热管成为微电子散热领域的关键元件,并广泛应用于各种电子产品。其中平板微热管由于其良好的蒸发吸热特性和形状易于与芯片贴合等优点被越来越多地应用于高效散热中。而微热管或热管内微结构具有强化传热传质的作用,引起研究者越来越多的关注。1.微热管的发展与国内外研究现状微热管是利用密封在管内工质相变进行热量传输的器件,具有体积小、重量轻、传热效率高、成本低、易于集成、无需外加动力等显著优点,能有效解决目前微小型器件和芯片的散热问题,具有广泛的应用前景。1944年Gaugler第一次提出了热管的工作原理;1963年美国《应用物理》杂志报道了世界上的第一根热管;1984年Cotter等人提出了热管微型化的设想,为微热管的研究开辟了道路;1984年,T.P.Cotter在第五届国际热管会议上首次提出了微热管的概念,并指出微热管在用于电子芯片冷却散热领域具有广阔的应用前景。关于微热管的研究,最初集中于几个厘米长,工质通道横截面为带有尖角区域的图形,通道的水力半径在10μm~100μm的单根微热管。工质回流主要靠的是横截面尖角区域所形成的毛细力。这种单根微热管主要应用在传输热量不是很大,但要求温度分布均匀稳定的领域。随后微热管的研究分别从实验研究和理论研究两方面逐步展开,研究结果均体现出这一传热元件相比其它传热手段具有效率高而无需外加动力的优点。而关于微热管结构的研究也从单根微热管逐步发展到微热管阵列,即在固体基板上开出一簇簇微型槽道,这样的方式大大提高了微热管的传热能力,但这只是单根微热管的一种简单的并列组合。进一步的改进是具有连通蒸汽腔的平板微热管。平板微热管通过连通蒸汽腔降低了气液界面高速对流产生的界面摩擦力,使热管的传热能力进一步提高,从而成为目前微热管领域的研究热点。2.微热管工作原理图l所示为微热管工作原理示意图。根据微热管内部蒸汽流动情况,沿其轴向可分为蒸发段、绝热段和冷凝段。从结构上分析,微热管包括管壳、毛细吸液芯和工作介质(液流)。为降低热阻和工作介质沸点,提高微热管工作效率,管壳内部需保持一定的真空度。在微热管工作时,工作介质在蒸发段吸收热源热量发生相变,蒸汽流经过绝热段到达冷凝段释放热量并凝结为液体,冷凝液流在毛细吸液芯的毛细作用下回流到蒸发段,如此循环下去,微热管不断将热量从热源带走。热量由一端传向另一端,在整个热量传递的过程中主要包含以下六个相互关联的过程:(1)热量从热源通过管壁和充满工作液体的管芯传递到液汽分界面;(2)液体在蒸发段内的液汽分界面上蒸发;(3)蒸汽腔内的蒸汽从蒸发段流到冷凝段;(4)蒸汽在冷凝段内的汽液分界面上凝结;(5)热量从汽液分界面通过管芯、液体和管壁传给冷源;(6)冷凝后的工作介质液体在管芯内毛细力作用下回到蒸发段。3.微热管与常规热管的区别微热管的结构及工作原理与常规热管类似,最大的区别是常规热管内部通常存在专门提供毛细力以供工质回流的毛细吸液芯;而微热管则主要是通过沟道尖角区完成工质的回流[6]。微热管稳态工作时,微热管蒸发段受到外界加热,热量通过热管管壁及液态工质传递到汽液分界面,使工作液体在蒸发段内的汽液分界面上蒸发。由于液体蒸发,蒸汽腔内产生压差,而蒸汽正是在这压差的作用下由蒸发段流向冷凝段并在冷凝段内的汽液分界面上凝结,释放出热量。热量通过液态工质和管壁传给冷源,最后由于热管内腔尖角区域的毛细作用使冷凝后的工作液体回流到蒸发段[7]。图2给出了常见的微热管沟道截面结构。如前所述,微热管与常规热管最大的差别在于微热管依靠沟道尖角区提供毛细力,理论分析发现只要是非圆形的截面都能提供或大或小的毛细力。微热管发展之初,常用的沟道结构主要是简单的三角形和矩形结构,如2图中(a)、(b)、(c)所示。随着机械加工和其他各种加工技术的发展,一些比较不规则的结构也进入研究之列,如图2-2中(d)、(e)、(f)所示。在实际应用中采用哪种沟道结构主要由应用场合、热管材料、加工方法等共同决定。4.微热管的传热极限微平板热管通过相变换热的工作机理使其具有很强的传热能力,但也不能无限制的增大其热载荷,热管工作过程中也受到很多因素影响存在一定的传热极限。传热极限的大小是由热管的内部流道结构、外部形状特征、管壳材料、加工方法、工质特性、工作温度等共同决定的。而多种影响因素分别产生的传热极限中最小值即决定了微热管的最大传热能力[8]。通过国内外大量研究发现目前对微热管性能影响最大的几种常见传热极限为:工质回流极限、工质沸腾极限、气体冷凝极限、对流携带极限、蒸汽压力极限等。现对其逐一介绍:(1)工质回流极限随着热管蒸发段热载荷的不断增加,液体由冷凝段流向蒸发段的速度不能无限制增大,会受到毛细结构产生的驱动力的限制,为此称其为工质回流极限。此时当热量超过此极限值,由毛细力作用回流的冷凝工质便满足不了蒸发段的需求,结果会在热管蒸发段发生干涸现象,蒸发段温度急剧升高,严重时就会出现烧损等情况。微热管与常规热管相似,工质回流极限依然是影响其传热能力的主要问题,而且对于微热管而言,靠沟道尖角区域回流工质时更容易产生工质回流不足的现象,因此工质回流极限对微热管的影响更为突出。(2)工质沸腾极限随着热管蒸发段热量的增加,蒸发段径向热流密度或热管内壁液体温度过高,会在与管壁接触液体的核化中心产生沸腾气泡,而热管的吸液芯结构会阻碍气泡脱离吸液芯结构,因此气泡停留在液态工质回流的路径上会阻碍工质的回流。若产生气泡较多时,会在工质和管壁之间形成蒸汽层,使气体和管壁之间的热阻迅速增大,也会导致管壁温度快速增高,造成蒸发段干涸或者热管烧损的现象。通过研究发生工质沸腾极限时气体的临界热流和临界过热度可以发现微热管的工质沸腾极限由热管工作条件和沸腾气泡产生的临界半径共同决定。(3)气体冷凝极限微热管冷凝段的冷却能力可能会受到两种情况的限制:一种是充液量过大,微热管的实际工况与最佳工况有偏差,过量的工质在微热管冷凝段堆积,使换热面积变小,从而使微热管的性能降低或工作失效;另一种是不凝气体的存在,影响了冷凝段的冷凝效率。(4)对流携带极限随着微热管热载荷的不断增大,工质流道中的液态和气态工质的流速都会不断增大,会在气液交界面上产生对热管影响较大对流剪切力。当这个剪切力增大到一定程度时,气流会将部分液态工质卷入气流中,从而减少了液态工质回流到蒸发段的量。这种现象发生时会大大降低热管的传热能力,使其过早达到传热极限。(5)蒸汽压力极限又称之为粘滞极限,当热管的工作温度较低时,内部气态工质较为稀薄,会出现分子不连续现象,而由于管壁与气体分子的粘滞力作用会使气态工质在冷凝段末端出现压降变小的状况,使其内部整蒸汽的运动受到限制,导致热管的传热能力受到一定的影响。5.槽道式平板微热管理论分析本节将以微槽道平板微热管为例,如图3所示,利用一维稳态模型,对影响其性能的几个结构性问题做定量分析,指出其性能可进一步提高的潜在范围,并提出通过结构改进的方案和意义。5.1微槽道平板微热管的一维稳态模型一维稳态模型是目前最为常用的用于预测平板微热管传热能力、分析其内部工作过程的一种理论分析方法,其计算结果能准确反应微热管的工作状态平板微热管的一维稳态模型通常利用有限容积法建立,即将所研究对象。通过某种方法划分为若干个有限容积单元,在每个有限容积单元内选取控制节点;再分别对每个有限容积单元列出守恒方程,并对其进行离散化处理,得出离散化方程组;最后通过数值方法将其求解。5.2模型的假设条件平板微热管工作时内部发生复杂的流动、相变、传热过程,一维稳态模型只能将其物理过程简化处理。因此,参照国内外相关理论研究,在保证模型计算精度的前提下,为使模型简化需做出如下假设:(1)热管工作在稳定的条件下,不考虑微热管的瞬态和不稳定状态,因为只有在热管处于稳态时,后文的质量守恒方程才是准确有意义的;(2)气体和液体工质的密度为恒定值,均为不可压缩流体,因为在对流体建立动量守恒方程时要求流体不可压缩,只有这样动量守恒方程才准确有意义;(3)液态工质达到稳定工作状态时其液体表面弯月面半径仅沿轴向变化,因为是一维模型,无法考虑其在其它方向的变化;(4)同理工质的物理参量也只能沿轴向发生变化,例如压强、流速等均取其在流体横街面上的平均值。5.2.1模型的控制方程在建立控制方程之前对微热管进行有限元划分,如图4所示为微热管内部某槽道的剖面图,其近似给出了液体与气体稳态工作时的分布图,沿热管轴向将划分为若干个长度为dz的有限元体积,图4中也给出了单个有限元体积的示意图,下文中将对单个有限元体积建立相应的控制方程。(1)质量守恒方程对于有限容积单元dz,在其处于稳定状态时满足质量恒定,即单位时间内流入有限容积单元dz和流出dz的质量是相等的,如图5所示。因为热管工作在稳定状态,且对于任意一个有限容积单元都应处在稳定状态所以每一个有限容积单元内都应满足质量守恒定律,即单元内工质质量为恒定值,且随着时间的变化该恒定值是不变的。因此对于某一有限容积单元流入质量与流出质量的差值为发生相变的质量。相变的质量可以由m=Q×fgh得出,其中Q为吸收或放出的热量,fgh为汽化潜热,m为相变液态工质的质量。当微热管槽道数为N时,则Q=N×m×fgh,那么单根槽道内发生相变的液态工质质量是:(2)动量守恒方程本文仍以液态工质流动为主要研究对象。在此前我们已经阐述了微槽道内液相工质流动的工作原理:由于蒸发段与冷凝段毛细半径值的不同所产生的毛细力的作用,使得微槽道内的液体会从冷凝段流回蒸发段,微槽道所提供的毛细力的大小与这两个毛细半径之间的差值是成正比关系。在毛细力的作用下液态工质体由冷凝段流向蒸发段的过程中还受到其它作用力的影响,如重力、压力和摩擦力等。在微槽道内液态工质流动的动量守恒方程式中,关于摩擦力项的部分争议较大,而关于重力和压力的动量项定义都不存在任何分歧。实际上摩擦力项应由槽道壁面产生的摩擦力和反向流动蒸汽与液态工质之间长生的高速对流剪切力两部分组成。而在气态工质的流动过程中,也存在这两种摩擦力影响,其中不可以忽略液态工质流动对蒸汽作用的摩擦力。图6对整个动量关系有详细的描述。(3)Laplace-Young方程微热管在工作时,蒸汽在冷凝段冷凝,液体在冷凝段增多,使弯月面半径变大;而液体在蒸发段受热蒸发,液体向尖角区流动,使毛细半径变小。槽道内部的毛细作用就是由这种冷凝段和蒸发段之间的毛细半径之差产生的。弯月面的产生是由于工质表面张力、气提压强和液体压强之间共同作用的结果,Laplace-Young方程给出了弯月面半径和气液压强之间的关系:5.2.2模型的求解过程式(5-8),(5-9),(5-12),(5-13),(5-15)和(5-16)给出的边界条件,建立了微热管一维稳态的毛细流动模型。上述模型的方程组建立完毕后可以在MATLAB环境下采用四阶Runga-Kutta值积分算法建立迭代程序,对其进行数值求解。在实际求