1主讲教师:张伟线性代数2第二章小结一、矩阵的运算条件运算律加法同型nmijijbaBA)(数量乘法无nmijkakA乘法nmijcABCpkkjikijbac1pmijaAnpijbB转置mnjiTaAnmijaA分块矩阵以上运算类似。3运算律1)同数的运算律。一般二次运算转置取逆取行列式BATTTBABAAkkAnkATTkAkAABTTTABABAATT111ABABAA1111TTAABAAB2)BAkAAB、、(交换律、结合律、分配律)CBACAB0,00BAABBAAB,011kAkAk1AAT11AA的运算律41、行列式的性质2、行列式的计算:i)化三角形法;ii)降阶法。3、行列式的展开定理二、方阵的行列式5三、逆矩阵1、可逆的充分必要条件:Ab)可化成一系列初等方阵的乘积。0Aa)2、可逆判别与求法*11AAAEAB1AB1)0A,2)EBA(),则A可逆,且初等行变换法1AEEA行3)A可逆12PPPAm6已知结论方阵的行列式A1、2、上(下)三角行列式值等于对角线元素乘积;奇数阶反对称行列式为0;四、矩阵的数值特征71、求法定义法(秩等于矩阵不为0子式的最高阶数);2)初等行变换法。000rEPAQ2、常用结论1)有可逆矩阵PQ,使1)rARARPARAQRPAQR2)3)BRARABR,minnBRARBARlnnm4)五、矩阵的秩基本求法i)化三角形法;ii)降阶法。Anm是一个矩阵,若设8设矩阵A,B满足2B,AABA=321011324求B,其中解:B9122692683=-12E)-(A=461351341,121011322=2E-A由2BAAB得,A2E)-(A=B-1A2E)B-(A,例19计算n阶行列式)1()1(0......0000)2(2......000......................................000.....220000.....01112.....321nnnnnnn例210ncc....1)1(10.....0000)2(2.....000...................................000.....220000.....01012.....322)1(nnnnnnnnn)!1(21)1()!1()1(2)1(11nnnnnn11,4||321AAAAAA),,,(,是三阶方阵|3|321331AAAAAA,,计算21233131|3|ccAAAAAA,,|4|32131AAAAA,,||432131AAAAA,,2312332311244AAAccAAAAcc,,,,164321AAA,,解:例312xnxnxxD121412111nxxnnxnxxx12111!)1(1nxnn按第一列展开例4计算下列行列式1312111nnnnDn21221)1(1)1(1nnnnn21)1()1(13)1(131nnnn按第一列展开例5!12)1()1()1(13)1(2)1(221nnnnnnn14BAABeBABABAdAAcABBAbBABABAa))((112)(22222e成立时当,BAABABBAn1AAAn11成立时当,BAABBAABBAAB例7试证明AB不可逆.证明:R(AB)R(A)mn|AB|=0,AB不可逆.矩阵,设A为nmmn且B是矩阵,且mn.例6设A、B都是n阶方阵,则15,1,23,BABA阶方阵,如果都是设-13A-A计算*2BAABABAAAA计算设,,,,,,3321321解1*352A=A31-2A=3A-A-1-1-1A135=33221,,3ABAABA2+23221,,4ABAA+12124,,,,4321321ABAAAA*1,41AA计算AAA1)41(4141311AAAA1231*例841AAA1*nAA16例9,,8765654343211ARA求000064204321AR(A)=2可逆,B2ARBAR532BRARBAR初等变换BAR求3BARB求,011101110217R(A)=n-1,求a.1..................1...1...1aaaaaaaaaaaaaA=,解:|A|=1..................1...1aaaaaaaaaaA是n阶方阵,例101.....................1...11...111aaaaaaaaa[(n-1)a+1]=18[(n-1)a+1]1.....................1...11...111aaaaaaaaa=aaa1111...111[(n-1)a+1]=,1n=[(n-1)a+1](1-a)秩(A)=n-1,,1a故a=.11n19作业P141自测题